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Abstract

Attention mechanism has become a standard fixture in many
state-of-the-art natural language processing (NLP) models, not
only due to its outstanding performance, but also because it
provides plausible innate explanations for neural architectures.
However, recent studies show that attention is unstable against
randomness and perturbations during training or testing, such
as random seeds and slight perturbation of embeddings, which
impedes it from being a faithful explanation tool. Thus, a nat-
ural question is whether we can find an alternative to vanilla
attention, which is more stable and could keep the key charac-
teristics of the explanation. In this paper, we provide a rigorous
definition of such an attention method named SEAT (Stable
and Explainable ATtention). Specifically, SEAT has the fol-
lowing three properties: (1) Its prediction distribution is close
to the prediction of the vanilla attention; (2) Its top-k indices
largely overlap with those of the vanilla attention; (3) It is ro-
bust w.r.t perturbations, i.e., any slight perturbation on SEAT
will not change the attention and prediction distribution too
much, which implicitly indicates that it is stable to randomness
and perturbations. Furthermore, we propose an optimization
method for obtaining SEAT, which could be considered as
revising the vanilla attention. Finally, through intensive exper-
iments on various datasets, we compare our SEAT with other
baseline methods using RNN, BiLSTM and BERT architec-
tures, with different evaluation metrics on model interpretation,
stability and accuracy. Results show that, besides preserving
the original explainability and model performance, SEAT is
more stable against input perturbations and training random-
ness, which indicates it is a more faithful explanation.

Introduction
As deep neural networks have demonstrated great success
in various natural language processing (NLP) tasks (Otter,
Medina, and Kalita 2021), to establish trust further, how to
interpret these deep models are receiving increasing interest.
Recently, a number of interpretation techniques have been
developed to understand the decision of deep NLP models
(Ribeiro, Singh, and Guestrin 2016; Vaswani et al. 2017;
Dong et al. 2019). Among them, attention mechanism has
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Word Perturbation (N=2)

Figure 1: An example demonstrates the stability of prediction
and attention heat map trained with different methods under
word perturbation in the sentiment classification task. There
are four methods: Vanilla attention, Word-AT, Att-AT and our
SEAT. JSD and TVD are divergences to measure the stability
of explainability and prediction distribution (see Experiments
section for details). We use the closest synonyms to replace
the original word in sentence as word perturbation. N denotes
the number of replaced words. We can see explanation (heat
map) and prediction are changed in other methods.

become a near-ubiquitous component of modern NLP mod-
els. Different from post-hoc interpretation (Du, Liu, and Hu
2020), attention weights are often regarded as providing the
"inner workings" of models (Choi et al. 2016; Martins and
Astudillo 2016; Lei 2017). For instance, each entry of an
attention vector could point us to irrelevant information dis-
carded by the neural network or to relevant elements (tokens)
of the input source that have been factored in (Galassi, Lippi,
and Torroni 2020).

Despite its wide adoption, attention mechanism has been
questioned as being a faithful interpretation. Specifically,
Wiegreffe and Pinter (2019) show that attention is unstable,
as different model initialization leads to different attention
distributions given the same input (see Fig. 3 in Appendix
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for an example). Besides, attention is also fragile to input
perturbations during inference. For example, in Fig. 1, we
can observe that, after replacing a word with its synonym,
the attention changes significantly and may also give wrong
predictions. In addition, perturbing word embeddings will
also affect the prediction distribution and the explainability
of attention (see details in Appendix Fig. 4). Actually, insta-
bility has been identified as a common issue of interpretation
methods in deep models. Generally, an unstable interpreta-
tion makes it easy to be influenced by noises in data, thus
impeding users from understanding the inherent rationale
behind model predictions. Moreover, instability reduces the
reliability of interpretation as a diagnosis tool of models,
where small carefully-crafted perturbation on input could dra-
matically change the interpretation result (Ghorbani, Abid,
and Zou 2019; Dombrowski et al. 2019; Yeh et al. 2019).
Thus, stability now becomes an important aspect of faithful
interpretation. Based on the above facts, a natural question
is can we make the attention mechanism more faithful by
improving its stability, while keeping the most important
explanation and prediction characteristics?

To tackle the problem, we first need to give a rigorous
definition of such a "stable attention". Intuitively, a stable
attention should have the following three properties: (1) It
should produce a similar prediction as the vanilla attention to
preserve model utility; (2) The top-k indices of the stable at-
tention and vanilla attention should largely overlap with each
other, so that the stable attention inherits the interpretability
of vanilla attention; (3) It should be robust to the randomness
in training or input perturbations during testing. Based on the
above criteria, in this paper, we present a formal definition of
SEAT (Stable and Explainable Attention). Specifically, our
contributions can be summarized as follows.

• We provide a rigorous mathematical definition of SEAT.
Specifically, to keep property (1), SEAT ensures the loss
between its prediction distribution (vector) and the predic-
tion distribution (vector) based on attention is sufficiently
small. For property (2), we ensure the top-k indices over-
lap between SEAT and vanilla attention are large enough.
For property (3), SEAT guarantees some perturbations on
it will not change the prediction distribution too much,
which implicitly ensures it is robust to randomness and
perturbations during training and testing.

• In the second part of the paper, we propose a method to
find a SEAT. Specifically, we present a min-max stochastic
optimization problem whose objective function involves
three terms, which correspond to the above three proper-
ties. However, the main difficulty is that the term induced
by property (2) is non-differentiable, which impedes us
from using gradient descent based methods. To address
this issue, we also propose a surrogate loss function of
top-k overlap function.

• Finally, we conduct intensive experiments on four bench-
mark datasets using RNN, BiLSTM and BERT to ver-
ify the above three properties of the SEAT. Particularly,
we first demonstrate our SEAT is more stable than other
baselines via three different perturbations or randomness:
random seeds, embedding vector perturbation, and input

token perturbation. We also use three recent evaluation
metrics on model interpretability in evaluation. Results
reveal our SEAT is a more faithful interpretation. Besides,
we compare the F1 score of our SEAT and other baselines,
showing that there is almost no accuracy degradation for
SEAT compared with vanilla attention.

Related Work
Stability and robustness in attention. There exists some
work studying or improving either the stability or the robust-
ness of attention from the explanation perspective. Recently,
Kitada and Iyatomi (2021) propose a method to improve the
robustness to perturbation of embedding vector for attention.
Specifically, they adopt adversarial training during the train-
ing process. However, in their method, they do not consider
the similarity and closeness between their new attention and
the original ones, which means their robust attention loses
the prediction performance and explainability of the origi-
nal attention. Equivalently, while their adversarial training
may improve the robustness of attention, it cannot be ensured
to be explainable due to the ignorance of the relationship
with vanilla attention. Sato et al. (2018) study using adver-
sarial training to improve the robustness and interpretation
of the text. However, their work is applied to input embed-
ding space, whose computational cost is high. Moreover,
their method still can guarantee the closeness to attention on
neither prediction nor explanation, and their method cannot
ensure robustness against other randomness such as random
seeds. (Mohankumar et al. 2020) explores modifying the
LSTM cell with diversity-driven training to enhance the ex-
plainability and transparency of attention modules. However,
it does not consider the robustness of attention, which makes
their method far from a faithful method.

Stability in explanation techniques. Besides attention,
there are works on studying stable interpretation. For ex-
ample, Yeh et al. (2019) theoretically analyzes the stability
of post-hoc interpretation approaches and proposes using
smoothing to improve interpretation stability. Jacovi and
Goldberg (2020) discuss high-level directions of designing re-
liable interpretation. However, these techniques are designed
for post-hoc interpretation, which cannot be directly applied
to attention mechanisms. Recently, Yin et al. (2022) intro-
duced two metrics to measure interpretability via sensitivity
and stability. They also introduce methods to better test the
validity of their evaluation metrics by designing an iterative
gradient descent algorithm to get a counterfactual interpreta-
tion. But they do not consider how to improve the faithfulness
of explainable models. Thus, it is incomparable to our work.
And we will use these evaluation metrics in experiments.

Stable and Explainable Attention
Vanilla Attention
We first give a brief introduction to the attention mecha-
nism (Vaswani et al. 2017). Here we follow the notations
in (Jain and Wallace 2019). Let x ∈ Rs×|V | denote the model
input, composed of one-hot encoded words at each position.
There is an embedding matrix E with dimension d. After
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passing through the embedding matrix E, the words have
more dense token representations as xe ∈ Rs×d.

There is an encoder (Enc)-decoder (Dec) layer. For the
encoder, it takes the embedded tokens in order and produces
s number of m-dimensional hidden states after the Enc pro-
cedure, i.e., h(x) = Enc(xe) ∈ Rs×m with ht(x) as the
word representation for the word at position t in x.

A similarity function ϕ maps h(x) and query Q ∈ Rm

to scalar scores, and the attention weights are induced
by w(x) = softmax(ϕ(h(x),Q)) ∈ Rs. Here we con-
sider two common types of similarity functions: Additive
ϕ(h(x),Q) = vT tanh(W1h(x) +W2Q) (Bahdanau, Cho,
and Bengio 2015) and Scaled Dot-Product ϕ(h,Q) = h(x)Q√

m

(Vaswani et al. 2017), where v, W1, and W2 are model pa-
rameters.

Based on w, the model makes predictions after the Dec
procedure, i.e., y(x,w) = σ(θ · hw) ∈ R|Y|, where hw =∑s

t=1 wt(x) · ht(x), σ is an output activation function, θ is
a parameter and |Y| denotes the number of classes.

Stable and Explainable Attention
Motivation. As we mentioned previously, our goal is to
find some "stable attention" that keeps the performance and
explainability of attention, while it is more robust against
some randomness and perturbations during training and
testing. Before showing how to find a stable attention, we
propose the following three properties for it.

1. A stable attention should preserve the outstanding perfor-
mance of attention models, i.e., we hope the prediction
distribution (vector) based on the stable attention is simi-
lar to the distribution (vector) based on vanilla attention
for any input x. Mathematically, we can use different
divergence metrics to measure the similarity.

2. A stable attention should keep the explainability of vanilla
attention. The rank of each entry in the attention vector
determines the importance of its associated word token.
To keep the order of leading entries, mathematically, we
can use the overlaps of top-k indices between stable atten-
tion and vanilla attention to measure their similarity on
explainability, where k is a hyperparameter.

3. Such a new attention should be stable. Please note that
compared with the robustness to adversarial attacks, here
our stability definition is more general, i.e., it should be
robust against any randomness and perturbations during
training and testing. These include random seeds in train-
ing, and perturbations on embedding vectors or input
tokens during testing. Thus, unlike adversarial training, it
is difficult to model the robustness to various randomness
or perturbations directly. To resolve the issue, as we men-
tioned, those randomness and perturbations will cause
attention changes dramatically, which could be thought
as some noise added to attention will change it signifi-
cantly. Thus, if the "stable attention" is resilient to any
perturbations, then this can indicate that such vector is
robust to any randomness and perturbations implicitly. In
total, mathematically we can model such robustness via
the resilience against perturbations of "stable attention".

Based on the above motivation, in the following we for-
mally give the definition of "stable attention" called Stable
and Explainable Attention (SEAT) denoted as w̃. Since we
need to use the overlaps of top-k indices to measure the sim-
ilarity on explainability with attention. We first provide its
formal definition.
Definition 1 (Top-k overlaps). For a vector x ∈ Rd, we
define the set of top-k component Tk(·) as follow,

Tk(x) = {i : i ∈ [d] and {|{xj ≥ xi : j ∈ [d]}| ≤ k}}.
And for two vectors x, x′, the top-k overlap function Vk(x, x

′)
is defined by the overlap ratio between the top-k components
of two vectors, i.e., Vk(x, x

′) = 1
k |Tk(x) ∩ Tk(x

′)|.
Note that in attention, w could be seen as a function of x.

Thus, w̃ can also be seen as a function of x. Moreover, since
we care about replacing the attention vector, we still follow
the original model except for the procedure to produce the
vector w̃(x). We define SEAT as follows.
Definition 2 (Stable and Explainable Attention). We call a
vector w̃ is (D1, D2, R, α, β, γ, Vk)-Stable and Explainable
Attention (SEAT) w.r.t. the vanilla attention w if it satisfies
the following properties for any x:
• (Closeness of Prediction) D1(y(x, w̃), y(x,w)) ≤ γ for
γ ≥ 0, where D1 is some divergence function, y(x, w̃) =
σ(θ · hw̃) ∈ R|Y| and y(x,w) = σ(θ · hw) ∈ R|Y|;

• (Similarity of Explainability) Vk(w̃(x),w(x)) ≥ β for
some 1 ≥ β ≥ 0;

• (Stability) D2(y(x, w̃), y(x, w̃ + δ)) ≤ α for all ∥δ∥ ≤
R, where D2 is some divergence function, ∥ · ∥ is a norm
and R ≥ 0.

Note that in the previous definition, there are several pa-
rameters. Specifically, γ constrains the closeness between the
prediction distribution based on w̃ and the prediction distri-
bution based on vanilla attention, where w̃ = w if γ = 0.
Therefore, we hope γ to be as small as possible. The second
condition ensures w̃ has similar explainability with vanilla
attention. There are two parameters, k and β. The value of
k could be decided by prior knowledge, where we hope the
top-k attention indices will play the most important role to
make the prediction. β measures how much explainability
does w̃ inherit from vanilla attention. When β = 1, it means
the top-k of the entries in w̃(x) is the same as that in vanilla
attention. Thus, β should close to 1. The third condition in-
volves two parameters R and α, which correspond to the
robust region and the level of stability, respectively. Ideally,
if w̃ satisfies this condition with R = ∞ and α = 0, then w̃
will be stable w.r.t any randomness or perturbations. Thus,
in practice we wish R to be as large as possible and α to be
sufficiently small. Based on the above discussions, we can
see Definition 2 is consistent with our intuitions about "stable
attention".

Finding a SEAT
In the last section, we presented a rigorous definition of stable
and explainable attention. To find such a SEAT, we propose to
formulate a min-max optimization problem that involves the
three conditions in Definition 2. Specifically, the formulated
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optimization problem takes the first condition (closeness of
prediction) as the objective, and subjects to the other two
conditions as constraints. Specifically, we first have

min
w̃

ExD1(y(x, w̃), y(x,w)). (1)

Equation (1) is the basic optimization goal, where we want
to get similar output prediction with vanilla attention for any
input x. If there is no further constraint, then we can see
the minimizer of Equation (1) is just the vanilla attention w.
Thus, we include constraints for this objective function:

∀x s.t. max
||δ||≤R

D2(y(x, w̃), y(x, w̃ + δ)) ≤ α, (2)

Vk(w̃(x),w(x)) ≥ β. (3)

Equation (2) is the constraint of stability and Equation (3)
corresponds to the condition of similarity of explainability.
Combining Equations (1)-(3) and dealing with the constraints
using regularization, we can get the following objective:

min
w̃

Ex[D1(y(x, w̃), y(x,w)) + λ2(β − Vk(w̃(x),w(x)))

+ λ1( max
||δ||≤R

D2(y(x, w̃), y(x, w̃ + δ))− α)], (4)

where λ1 > 0 and λ2 > 0 are hyperparameters.
From now on, we convert the problem of finding a vector

that satisfies the three conditions in Definition 2 to a min-max
stochastic optimization problem, where the overall objective
is based on the closeness of prediction condition with con-
straints on stability and top-k overlap.

Next we discuss how to solve the above min-max opti-
mization problem. In general, we can use the stochastic gra-
dient descent based methods to get the solution of outer
minimization, and use PSGD (Projected Stochastic Gradient
Descent) to solve the inner maximization. However, the main
difficulty is that the top-k overlap function Vk(w̃(x),w(x))
is non-differentiable, which impedes us from using gradi-
ent descent. Thus, we need to consider a surrogate loss of
−Vk(w̃(x),w(x)) with details as below.

Projected gradient descent to solve δ. Motivated by
(Madry et al. 2018), we can interpret perturbation as the
attack to w̃ via maximizing δ. Then, δ can be updated by the
following procedure in the p-th iteration.

δp = δ∗p−1+αp
1

|Bp|
∑
x∈Bp

∇D2(y(x, w̃), y(x, w̃+δ∗p−1));

δ∗p = argmin
||δ||≤R

||δ − δp||,

where αp is a parameter of step size for PGD, Bp is a batch
and |Bp| is the batch size. Using this method, we can derive
the optimal δ∗ in the t-th iteration for the inner optimiza-
tion. Specifically, we find a δ as the maximum tolerant of
perturbation w.r.t w̃ in the t-th iteration.

Top-k overlap surrogate loss. Now we seek to design a
surrogate loss LTopk(w̃,w) for −Vk(w̃,w) which can be
used in training. To achieve this goal, one possible naive
surrogate objective might be some distance (such as ℓ1-norm)
between w̃ and w, e.g., L(w̃) = ||w̃−w||1. Such a surrogate

Algorithm 1 Finding a SEAT

1: Initialize w̃0.
2: for t = 1, 2, · · · , T do
3: Initialize δ0.
4: for p = 1, 2, · · · , P do
5: w̃′

t−1 = w̃t−1 + δp−1

6: Update δ using PGD, where Bp is a batch
δp = δp−1

+αp
1

|Bp|
∑
x∈Bp

∇D2(y(x, w̃t−1), y(x, w̃
′
t−1)).

7: δ∗p = argmin
||δ||≤R

||δ − δp||.

8: end for
9: Update w̃ using Stochastic Gradient Descent, where

Bt is a batch
w̃t = w̃t−1 − ηt

|Bt|
∑
x∈Bt

[∇D1(y(x, w̃t−1), y(x,w))

− λ1∇D2(y(x, w̃t−1), y(w̃t−1 + δ∗P ))

− λ2∇LTopk(w, w̃t−1)].

10: end for
11: Return: w̃∗ = w̃T .

objective seems like it could ensure the top-k overlap when
we obtain the optimal or near-optimal solution (i.e., w =
argminL(w̃) and w ∈ argmin−Vk(w̃,w)). However, it
lacks consideration of the top-k information, which makes it
a loose surrogate loss. Since we only need to ensure high top-
k indices overlaps between w̃ and w, one improved method
is minimizing the distance between w̃ and w constrained
on the top-k entries only instead of the whole vectors, i.e.,
||wSk

w
−w̃Sk

w
||1, where wSk

w
, w̃Sk

w
∈ Rk is the vector w and

w̃ constrained on the indices set Sk
w respectively and Sk

w is
the top-k indices set of w. Since there are two top-k indices
sets, one is for w̃ and the other one is for w, here we need to
use both of them to involve the top-k indices formation for
both vectors. Thus, based on our above idea, our surrogate
can be written as follows,

LTopk(w, w̃) =
1

2k
(||wSk

w
− w̃Sk

w
||1 + ||w̃Sk

w̃
−wSk

w̃
||1). (5)

Note that besides the ℓ1-norm, we can use other norms. How-
ever, in practice we find ℓ1-norm achieves the best perfor-
mance. Thus, throughout the paper we only use ℓ1-norm.

Final objective function and algorithm Based on the
above discussion, we can derive the following overall ob-
jective function:

min
w̃

Ex[D1(y(x, w̃), y(x,w)) + λ2LTopk(w(x), w̃(x))

+ λ1 max
||δ||≤R

D2(y(x, w̃), y(x, w̃ + δ))], (6)

where LTopk(w, w̃) is defined in (5). Based on the previous
idea, we propose Algorithm 1 to solve (6).
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Model Method Emotion SST Hate RottenT
JSD↓ TVD↓ F1↑ JSD TVD F1 JSD TVD F1 JSD TVD F1

RNN

Vanilla 0.002 20.145 0.663 0.019 19.566 0.811 0.009 15.576 0.553 0.008 19.139 0.763
Word-AT 0.028 1.824 0.627 0.016 1.130 0.798 0.026 1.170 0.527 0.037 1.381 0.741
Word-iAT 0.042 2.691 0.653 0.023 1.277 0.815 0.022 1.049 0.523 0.054 1.336 0.766

Attention-RP 0.025 3.276 0.671 0.028 2.042 0.792 0.025 2.672 0.554 0.009 3.691 0.770
Attention-AT 0.055 2.716 0.665 0.047 2.394 0.782 0.031 2.210 0.528 0.068 4.234 0.755
Attention-iAT 0.017 3.654 0.645 0.048 2.653 0.746 0.039 2.264 0.533 0.054 1.594 0.753
SEAT(Ours) 3.81E-08 1.750 0.672 2.75E-07 1.099 0.813 1.79E-09 0.908 0.579 6.46E-07 1.178 0.763

BiLSTM

Vanilla 0.002 23.447 0.612 0.027 18.640 0.809 0.060 15.633 0.524 0.009 20.125 0.764
Word-AT 0.050 1.927 0.662 0.020 0.810 0.798 0.084 1.537 0.538 0.031 1.071 0.757
Word-iAT 0.058 1.139 0.640 0.034 1.037 0.802 0.091 1.590 0.530 0.045 1.218 0.765

Attention-RP 0.031 1.326 0.642 0.034 1.267 0.772 0.052 1.299 0.522 0.066 1.412 0.764
Attention-AT 0.076 1.541 0.672 0.028 1.661 0.779 0.057 1.504 0.523 0.079 2.044 0.766
Attention-iAT 0.033 1.267 0.651 0.034 1.528 0.801 0.062 2.256 0.525 0.076 1.751 0.777
SEAT(Ours) 1.23E-08 0.736 0.670 1.80E-08 0.777 0.802 8.49E-09 1.030 0.543 2.57E-08 0.885 0.771

BERT

Vanilla 0.024 2.127 0.721 0.005 2.605 0.912 0.036 1.771 0.493 0.010 2.500 0.845
Word-AT 0.085 0.060 0.694 0.267 0.055 0.900 0.170 0.043 0.554 0.510 0.036 0.826
Word-iAT 0.584 0.029 0.694 0.241 0.054 0.895 0.166 0.049 0.496 0.480 0.049 0.844

Attention-RP 0.035 0.232 0.657 0.086 0.127 0.893 0.079 0.277 0.554 0.078 0.142 0.817
Attention-AT 0.067 0.119 0.707 0.005 0.156 0.907 0.031 0.230 0.510 0.041 0.189 0.818
Attention-iAT 0.096 0.222 0.684 0.129 0.200 0.915 0.074 0.271 0.512 0.108 0.183 0.831
SEAT(Ours) 4.70E-07 0.002 0.713 2.77E-07 0.036 0.907 2.42E-06 0.042 0.545 1.68E-08 0.003 0.841

Table 1: Results of evaluating embedding perturbation stability of (modified) attentions under three metrics. The perturbation
radius is set as δx=1e-3. ↑ means a higher value under this metric indicates better results, and ↓ means the opposite.

Model Method IMDB SST Hate RottenT
Comp.↑ Suff.↓ Sens.↓ Comp. Suff. Sens. Comp. Suff. Sens. Comp. Suff. Sens.

RNN

Vanilla 0.004 0.007 0.131 5.744 7.02E-04 0.090 0.009 0.066 0.138 4.483 0.026 0.090
Word-AT 2.899 0.018 0.121 5.280 0.000 0.081 2.408 0.058 0.137 2.512 0.031 0.093
Word-iAT 2.060 0.010 0.122 5.452 9.35E-06 0.121 6.069 0.075 0.136 4.534 0.058 0.087

Attention-RP 0.099 0.073 0.130 6.001 2.87E-04 0.085 3.585 0.080 0.133 4.637 0.052 0.094
Attention-AT 0.026 0.052 0.131 3.118 0.000 0.088 2.493 0.372 0.134 4.713 0.049 0.096
Attention-iAT 1.994 6.74E-04 0.117 4.788 0.000 0.091 5.351 0.126 0.133 2.435 0.039 0.086
SEAT(Ours) 3.281 1.04E-05 0.106 6.016 0.000 0.076 6.558 2.75E-04 0.129 4.796 0.025 0.084

BiLSTM

Vanilla 0.474 0.002 0.129 5.182 0.255 0.086 4.203 0.112 0.142 2.966 0.088 0.092
Word-AT 1.449 0.015 0.121 5.167 8.44E-04 0.096 5.438 0.207 0.153 3.388 0.062 0.080
Word-iAT 0.619 0.005 0.127 5.259 3.81E-05 0.087 4.568 0.320 0.145 3.339 0.078 0.082

Attention-RP 0.561 0.002 0.127 2.865 0.007 0.101 2.248 0.199 0.148 4.073 0.200 0.082
Attention-AT 1.294 0.051 0.111 2.129 0.004 0.098 3.220 0.065 0.140 4.925 0.216 0.082
Attention-iAT 0.555 0.002 0.127 5.176 0.004 0.083 4.092 0.290 0.141 2.431 0.377 0.083
SEAT(Ours) 1.502 6.41E-04 0.098 5.435 4.37E-06 0.076 6.240 0.025 0.140 4.941 0.046 0.077

BERT

Vanilla 5.07E-04 0.008 0.013 0.003 0.310 0.009 3.20E-04 0.401 0.016 0.001 0.092 0.010
Word-AT 5.01E-05 0.005 0.016 1.26E-05 4.47E-04 0.005 4.01E-04 0.014 0.017 0.005 0.043 0.016
Word-iAT 5.47E-04 0.007 0.017 1.51E-05 5.67E-04 0.004 0.003 0.045 0.017 2.93E-04 0.010 0.009

Attention-RP 0.085 0.086 0.014 0.002 0.010 0.011 0.035 0.034 0.016 0.017 0.003 0.010
Attention-AT 4.65E-05 0.338 0.016 4.50E-05 0.441 0.006 0.004 0.007 0.016 6.26E-04 0.032 0.011
Attention-iAT 0.002 0.164 0.015 1.19E-04 9.07E-04 0.007 0.001 0.151 0.017 0.003 0.025 0.010
SEAT(Ours) 0.160 0.002 0.012 0.497 0.000 0.004 0.153 0.006 0.015 0.040 0.002 0.008

Table 2: Results on evaluating the interpretability of different methods.

Experiments
In our experiments, we conduct extensive experiments to
show the performance of our SEAT compared to six baseline
methods. We provide a brief introduction to the experimental
setup next. More details are in Appendix.

Setup. First, we demonstrate the stability of SEAT under
three different randomness and perturbations: (1) random
seeds during training; (2) embedding perturbation during

testing, and (3) word perturbation during testing. For each
method, we use Jensen-Shannon Divergence (JSD) between
its attention with on perturbation and its attention under per-
turbation to evaluate the stability of explainability of the
learned attention. And the Total Variation Distance (TVD)
between the prediction distribution with no perturbation and
prediction under perturbation is used to measure prediction
stability.

Next, in order to show the explainability of SEAT, we use

12911



(a) Baseline-EMOTION (b) Baseline-SST (c) Baseline-Hate (d) Baseline-RottenT

(e) Ours-EMOTION (f) Ours-SST (g) Ours-Hate (h) Ours-RottenT

Figure 2: Comparison of stability against random seeds for vanilla attention and SEAT. Densities of maximum JS divergences
(x-axis) as a function of the max attention (y-axis) in each instance between its base model and models initialized on different
random seeds. In each max-attention bin, top (blue) is a negative-label instance, and bottom (red) is a positive-label instance.

Method Emotion SST Hate RottenT
JSD↓ TVD↓ F1↑ JSD TVD F1 JSD TVD F1 JSD TVD F1

Vanilla 0.628 2.847 0.721 0.315 3.655 0.912 0.491 2.004 0.493 0.585 3.464 0.845
Word-AT 0.004 0.022 0.694 0.175 0.065 0.910 0.111 0.058 0.546 0.473 0.056 0.836
Word-iAT 0.456 0.059 0.658 0.213 0.046 0.912 0.331 0.044 0.501 0.488 0.048 0.852

Attention-RP 0.039 0.235 0.657 0.089 0.128 0.893 0.085 0.278 0.554 0.078 0.143 0.817
Attention-AT 0.082 0.003 0.707 0.006 0.157 0.907 0.035 0.230 0.510 0.049 0.193 0.818
Attention-iAT 0.126 0.228 0.684 0.147 0.204 0.915 0.081 0.271 0.512 0.136 0.187 0.831
SEAT(Ours) 1.72E-09 0.001 0.716 1.55E-06 0.028 0.907 8.69E-06 0.037 0.555 1.10E-05 0.035 0.847

Table 3: Results on stability and utility of attention model under word perturbation (N = 1) using BERT.

the recent evaluation metrics of model interpretation pro-
posed by (Yin et al. 2022; DeYoung et al. 2020). Specifically,
we use three explainability evaluation metrics: comprehen-
siveness, sufficiency, and sensitivity.

Thirdly, we compare the F1 score of our SEAT with other
baselines to verify the property of closeness of prediction.
Finally, we conduct an ablation study to verify the efficiency
of our modules (regularizers) in the objective function (6) cor-
responding to each condition. In Fig. 5 of Appendix, we also
test the validity of surrogate loss for the top-k overlap func-
tion by comparing the performance of our loss in equation
(5) with the true top-k indices overlaps.
Model, Dataset and Baseline. Following (Jain and Wal-
lace 2019) and (Wiegreffe and Pinter 2019), we mainly
study the encoder-decoder architectures for binary classi-
fication tasks in this paper. For the encoder, we consider
three kinds of networks as feature extractors: RNN, BiL-
STM, and BERT. For the decoder, we apply one simple MLP
followed by a tanh-attention layer (Bahdanau, Cho, and Ben-
gio 2015) and a softmax layer (Vaswani et al. 2017). In
all experiments, we use four datasets: Stanford Sentiment

Treebank (SST) (Socher et al. 2013), Emotion Recognition
(Emotion) (Mohammad et al. 2018), Hate (Basile et al. 2019)
and Rotten Tomatoes (RottenT) (Pang and Lee 2005). And
we select the Binary Cross Entropy loss as D1 and D2 in (6).
We compare our method with Vanilla attention (Wiegreffe
and Pinter 2019), Word AT (Miyato, Dai, and Goodfellow
2016), Word iAT (Sato et al. 2018), Attention RP (attention
weight is trained with random perturbation), Attention AT
and Attention iAT (Kitada and Iyatomi 2021).
Stability Evaluation
Random seeds. Here we compare the stability against ran-
dom seeds for vanilla attention and our SEAT. Specifically,
we conduct multiple model training with different random
seeds and select one of them as the base model. We visu-
alize the JS divergence of the attention weight distribution
between the base model and models trained with different
random seeds for different methods. We conduct experiments
on several test samples and each testing sample is divided
into one of four bins by its maximum attention scores within
the sentence. Here we use the RNN architecture.

We can see that Fig. 2 (c) and 2 (d) have heavy tails for
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the baseline vanilla attention on SST and Hate datasets. The
violins cover wider ranges along the x-axis. This can be
interpreted as vanilla attention is unstable to random seeds.
We can see from Fig. 2 (f)-(h) that while using our SEAT
on SST, Hate and Rotten Tomatoes datasets, the violins are
more narrow and their tails are lighter, which implies SEAT
is more stable. This can be further confirmed by the fact the
violins of SEAL are much closer to zero than these of vanilla
attention, which means their corresponding JSD values are
much smaller.

Embedding perturbation. We compare the stability of our
SEAT with other baselines under embedding perturbation. In
this setting, we mainly consider two metrics: JSD and TVD,
which represents the explainability stability and prediction
stability, respectively. Details of our setting are in Appendix.
Results are shown in Tab. 1 and Tab. 8 in Appendix. We
can see that SEAT outperforms other baselines with RNN,
BiLSTM and BERT under JSD and TVD evaluation metrics.
Especially we can see that the JSD of all our results is almost
zero, which means SEAT is stable to perturbation for expla-
nation. We can see also that the TVD for vanilla attention
is large which means vanilla attention is extremely unstable
to perturbation for its prediction distribution. However, the
TVD of SEAT is small.

Word perturbation. We now aim to evaluate the stability
of our proposed method under word perturbation. Following
(Yin et al. 2022), we select BERT as our main model in this
part and conduct the perturbation in the following process:
first, we randomly choose N words from a given sentence and
then replace them with the closest synonyms. The distance
of words is computed based on gensim (Rehurek and Sojka
2011). We denote the original input and perturbed input as x
and x′, respectively. Then, similar to the above procedures,
we can compute JSD and TVD for each method. Tab. 3
and Tab. 10 in Appendix demonstrate that SEAT achieves
SOTA for both JSD and TVD in this setting. Similar to the
embedding perturbation case, we can see the JSD of SEAT is
much smaller than it of the vanilla attention and its value is
quite close to zero in all experiments, which indicates strong
explanation stability against word perturbation for SEAT.

Evaluating Interpretability and Utility
In this part, we measure the interpretability of SEAT and other
baselines using comprehensiveness, sufficiency and sensitiv-
ity. Results are shown in Tab. 2 and Tab. 9 in Appendix. Our
results show that SEAT outperforms other baselines on all
three evaluation metrics with RNN, BiLSTM and BERT. This
further confirms that enhancing stability in attention would
derive a more faithful interpretation. Our SEAT improves the
model interpretability.

In Tab. 1 and 3 we also compared the F1 score for different
methods. We can see that while in some of the results, our
method is not the best one. However, among these results,
the difference between the best result and ours is quite small,
which indicates that there is almost no accuracy deterioration
in SEAT. Surprisingly, we can also see that SEAT is better
than vanilla attention in most results and it could even achieve

Models Ablation Setting Metrics

L3 LTopk Suff.↓ TVD↓ F1↑

RNN

7.02E-04 21.464 0.814
✓ 6.22E-04 1.966 0.804

✓ 2.22E-04 2.997 0.782
✓ ✓ 1.02E-04 1.275 0.813

BiLSTM

0.255 20.398 0.809
✓ 0.016 1.214 0.802

✓ 0.004 1.745 0.779
✓ ✓ 4.37E-06 1.095 0.801

BERT

0.310 2.617 0.912
✓ 0.280 0.056 0.909

✓ 0.090 0.157 0.907
✓ ✓ 0.019 0.028 0.909

Table 4: Ablation study of SEAT. We evaluate the effective-
ness of L3 and LTopk in (6). Perturbation on the embedding
space (radius δx = 0.01) are conducted on SST.

SOTA in some cases, such as when the model is RNN and
the data is Emotion or Hate in Tab. 1.

Ablation Study

In the ablation study, we evaluate each module (regulariza-
tion) in (6). Specifically, we denote L1 as our main loss in
(1), then we consider and evaluate different combinations by
deleting LTopk or/and L3, where L3 corresponds to the third
term in (6). Note that if there is no LTopk and L3, then the
model will be the vanilla attention. Tab. 4, Tab. 6 and 7 in
Appendix show that each regularizer in our objective function
is indispensable and effective. Specifically, we can see the
sufficiency will decrease significantly if we add the LTopk

loss. This is due to that LTopk enforces a large overlap on
top-k indices and thus it makes SEAT inherit the explainabil-
ity of vanilla attention and it makes the model more stable.
Moreover, in the case where there is LTopk, adding term L3

could further decrease sufficiency as it improves stability.
Since L3 is to make the prediction distribution stable

against any randomness and perturbation, from Tab. 6 we can
see adding this term could decrease the TVD, which means
it improves the stability. Although LTopk can also help to
decrease TVD, we can see it is weaker than L3. Besides sta-
bility, L3 also can pull back the F1 score to make the model
close to vanilla attention. We can see that in the case where
there only exists LTopk, the F1 score decreases compared
with vanilla attention. And adding L3 does help minimize
the gap. This is because L3 could improve the model gener-
alization performance by making the model more stable.

Conclusions

In this paper, we provide a first rigorous definition namely
SEAT as a substitute for attention to give a more faithful
explanation. We also propose a method to get such a SEAT.
Results show that SEAT outperforms other baselines and is
considered as an effective and more faithful explanation tool.
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