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Abstract—Mobile crowdsensing applications can learn the ag-
gregate statistics over personal data to produce useful knowledge
about the world. Since personal data may be privacy-sensitive,
the aggregator should only gain desired statistics without learning
anything about the personal data. Differential privacy, the state-
of-the-art privacy mechanism, can provide strong protection to
ensure parties’ privacy in such scenarios. Correspondingly, based
on the differential privacy, many collusion-tolerant aggregation
schemes have been proposed. However, those collusion-tolerant
schemes usually incur high accumulated error and also require
the priori knowledge of the fraction of those colluded parties.
In this paper, we propose a differential-private collusion-tolerant
aggregation protocol, while incurring no additionally error except
the noise required for providing the differential privacy guaran-
tee. Another salient characteristic of the proposed protocol is that
it need not to have an priori estimation of those colluded parties.
In addition, we also design an efficient aggregation encryption
scheme to support those mobile crowdsensing applications where
large plaintext is required. We also make some extensions to make
the proposed protocol more applicable in realities, such as the
fault tolerant. The analysis shows that the proposed protocol can
achieve desired goals, and the performance evaluation demon-
strates the protocol’s efficiency in reality.

Index Terms—Mobile Crowdsensing, Aggregation, Differential
Privacy.

I. INTRODUCTION

The increasing deployment of sensors on current smart-
phones and other daily devices, paves the way for an new ex-
citing paradigm for accomplishing large-scale sensing, known
as participatory sensing and/or mobile crowdsensing [8]. The
key idea behind mobile crowdsensing is to empower ordinary
users to collect and share sensed data learned from the
measured environment, to gain advanced knowledge.

A plethora of novel and exciting mobile crowdsensing
applications, which perform the aggregated statistics over these
sensing data, have emerged in recent years. For example, Hull
et al. [11] propose a system that uses mobiles phones carried
in vehicles to aggregate statistic results about traffic, quality
of en-route WiFi access points, and potholes on the road.

Within the scope of this manuscript, we discuss the typical
mobile crowdsensing system where a potentially malicious
aggregator aggregates sensing data related to the parties and/or
their environment. In other words, this mobile crowdsensing
system operates in a centralized fashion, i.e., the sensed
data collected by parties are reported (e.g., using wireless

data communications) to the untrusted aggregator. However,
during information aggregation for knowledge discovery, it
also brings privacy and security concerns, because private
information leakage can have serious consequences.

The authors in [5] define the notion of aggregation privacy
in mobile crowdsensing system and highlight threats to privacy
resulting from the disclosure of parties’ sensed data to the
untrusted aggregator. Here, we briefly introduce the defined
aggregation privacy notion [5] in the mobile crowdsensing
system: aggregation privacy in mobile crowdsensing is the
guarantee that parties maintain control over the release of
their sensitive information. This includes the protection of
information that can be inferred from both parties’ submitted
data as well as from the final aggregation statistic results in the
mobile crowdsensing system [5]. This implies that in addition
to the direct protect of the sensing data being submitted to the
aggregator, the protection of the parties’ privacy against the
malicious inference from the aggregation results should also
be achieved in the mobile crowdsensing system.

A. Related Work

In order to tackle the privacy concerns in different aggrega-
tion applications, such as mobile crowdsensing, various private
aggregation schemes have been proposed [12], [10], [1], [21],
[18], [3], [20], [4], [15], [2].

The primitive private aggregation schemes, such as [12],
[10], only consider how to securely perform the aggregation
task over multiple parties. More specifically, those secure
aggregation schemes allow the aggregator to learn the accu-
rate aggregation statistic results while preserving each party’
submitted data via specific techniques, such as homomorphic
encryption. However, the accurate aggregation results always
disclose private information of parties [6]. That is to say, par-
ties’ data privacy can be violated by malicious inference from
the accurate aggregation statistic results, which contracts with
the aggregation privacy notion in the mobile crowdsensing
system defined in [5].

To protect the privacy of parties’ sensitive information
against the illegitimate inference from the accurate aggregation
results, parties can add noises to their individual data to
make the aggregator only derive noisy aggregation summation
results. Meanwhile, two goals during the period aggregation
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procedure have to be ensured: preserving each party’ data
privacy and providing useful aggregation results. Otherwise,
the high added noise make the learned aggregation results
useless in reality. Fortunately, differential privacy [6] currently
is a strong privacy guarantee mechanism that can provide both
good utility and privacy guarantee.

Given that, lots of differentially private aggregation schemes
have been emerged. In 2010, Rastogi et al. [20] firstly propose
the differentially private aggregation scheme. Yet, this scheme
sacrifice the aggregation accuracy for resisting the collusion at-
tack. More specifically, the aggregator finally decrypt the noisy
aggregation summation result: �̄� = 𝑄 + 𝐿𝑎𝑝(𝜆) + 𝐸𝑥𝑡𝑟𝑎-
𝑁𝑜𝑖𝑠𝑒, where 𝑄 is the accurate summation over distributed
parties, 𝐿𝑎𝑝(𝜆) is the noise generated by honest parties to
provide 𝜖-differential privacy guarantee and 𝐸𝑥𝑡𝑟𝑎𝑁𝑜𝑖𝑠𝑒 is
that generated by malicious parties.

Shi et al. [21] in 2011 propose an computational differential-
privacy [18] (i.e., the (𝜖, 𝛿)-differential privacy, a relaxtion of
the standard 𝜖-differential privacy) aggregation scheme, which
is also collusion-tolerant. Subsequently, some works [15], [3]
adopt this scheme. However, firstly, this private aggregation
scheme [21] only satisfies the relaxed (𝜖, 𝛿)−differential pri-
vacy, since 𝛿 (𝛿 > 0) decreases the utility. Secondly, on the
extreme situation where 𝛾 = 𝑂( 1𝑛 ), the accumulated error
would be 𝑂(Δ𝜖

√
𝑛), which makes no sense in practice where

more accurate aggregation results are required.
Besides, the authors in [1] propose a 𝜖-differential priva-

cy aggregation scheme, which can achieve the two privacy
requirement in the mobile crowdsensing system [5] and is
also collusion-tolerant. However, the added noise is larger
than 𝐿𝑎𝑝(𝜆), the Laplace noise which is needed to ensure
𝜖-differential privacy. In 2013, Barthe et al. [2] propose a
aggregation protocol, which only ensures the computational
differential privacy, i.e., (𝜖, 𝛿)-differential privacy. In 2014,
Chen et al. [4] propose a private aggregation scheme, which
only provides 2𝜖-differential privacy.

Most importantly, those differential-private aggregation
schemes [20], [21], [3], [15], [1], [5] mentioned above all
require that the system should have a priori estimate over
the fraction of those corrupted parties, which is unpractical
and inflexible in many mobile crowdsensing applications. And,
they usually resist collusion attacks with a specific probability.

B. Our Result

Given those, we propose a private aggregation scheme,
which can provide 𝜖-differential privacy guarantee without
incurring any additional error and is collusion-tolerant. The
proposed protocol ensures that the accumulated error in the
sum statistics is only an copy Laplace noise required for 𝜖-
differential privacy, but the magnitude of the noise incorporat-
ed to each party’ data is not large enough to the data privacy.
On the other hand, communication channels are insecure,
making parties’ data suffer from eavesdropping attacks. So, it
can not guarantee the security of parties’ sensed data if only
based on the proposed differentially-private scheme. And, we
improve this by designing an efficient cryptographic scheme.

Besides, several other problems should also be addressed, such
as data pollution.

To sum up, the contributions of this paper can be summa-
rized as follows: firstly, we propose a 𝜖-differential privacy
aggregation protocol, which can achieve the goal of resisting
collusion attacks without incurring extra noise. Remarkably,
the proposed collusion-tolerant aggregation protocol don’t
require a priori estimation on the fraction of those colluded
parties; secondly, we give an efficient cryptographic scheme
which can support large plaintext spaces for computing the
aggregation summation, to resist eavesdropping attacks; third-
ly, we also extend our differential private protocol to make it
more applicable in reality, such as supporting parties’ dynamic
joins or leaves.

II. SYSTEM MODEL

A. System Setting

Here, we elaborate our aggregation system model in mobile
crowdsensing. We consider the distributed scenarios where
there are 𝑘 parties in total and each party 𝑃𝑖 holds his locally
private sensing data 𝑋𝑖,𝑡 (𝑖 ∈ [0, 𝑘)) at time 𝑡, while the
sensing data aggregator (SDA for short) want to compute the
sum of 𝑘 measurements (𝑖.𝑒.,

∑𝑘−1
𝑖=0 𝑋𝑖,𝑡 = 𝑋𝑡 in all 𝑡).

B. Attack Model

The attack model adopted in our system is the adaptive
semi-honest adversary model [17], an appropriate model wide-
ly accepted in distributed settings [17]. In this adversary
model, an adaptive adversary is capable of choosing which par-
ties to corrupt with during the computation procedure, rather
than having a fixed set of corrupted parties, while previous
works usually assume a fixed set of compromised parties. In
our mobile crowdsensing system, an adversary can either be
SDA or a participating party, who manages to learn both the
accurate local data (i.e., 𝑋𝑖,𝑡) of each party and sum of local
data (i.e., 𝑋𝑡) from all parties. Besides, all parties honestly
follow the proposed protocol, but adversaries obtain all their
internal values. Additionally, all communication channels are
assumed to be insecure, which means that parties’ transmitted
messages to SDA are susceptible to eavesdropping attacks.

C. Designing Goals

∙ Utility and Privacy Guarantee. Since the accurate sum
statistic over distributed parties can potentially violate
parties’ data privacy [7], we should let each party add an
appropriate noise to his data to protect the data privacy.
Meanwhile, we should also compromise two objectives:
preserving privacy and ensuring good utility. To achieve
this, we using the infinite divisibility of Laplace distribu-
tion propose a 𝜖-differential private aggregation protocol,
allowing parties collectively add only a Laplace noise
without any additional error to each aggregation result.
On the other hand, we use the secret sharing to make
the proposed protocol collusion-tolerant, to protect honest
parties’ privacy against the collusion attack between
colluded parties and SDA.
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∙ Security Guarantee. Note that using the infinite di-
visibility of Laplace distribution, the accumulated error
in the sum statistics is only an copy of Laplace noise,
but the magnitude of the noise incorporated to parties’
data is not large enough to protect parties’ data privacy.
And communication channels between them are insecure,
making their data suffer from eavesdropping attacks. So,
only based on the data perturbation mechanisms, the
security of parties’ data can be violated. We address this
security threat by designing an efficient cryptographic
scheme.
Given those, we design a differential privacy mechanism
combining with cryptographic construction, to provide
both security and privacy guarantee. The main security
goal in our distributed aggregation protocol is to ensure
that SDA learn only the final noisy summation results,
and nothing else about the private data provided by
parties.

∙ Additional Guarantee. In the distributed aggregation
environment, the problem that participating parties can
dynamically leave and join should be considered in the
proposed protocol. Additionally, some other situations,
such as data pollution, also need to be considered.

III. BASIC PROTOCOL BLOCKS

A. Protocol Sketch

Here, we give a high level description of the proposed
aggregation protocol. Firstly, each party independently adds
an appropriate noise to his sensing data using the data pertur-
bation scheme mentioned below, then encrypts his noisy data
using the corresponding encryption scheme and at last sends
the encrypted noisy sensing data to SDA who can decrypt
summation statistics results (𝑋𝑡 =

∑𝑘−1
𝑖=0 𝑋𝑖,𝑡). Note that all

parties collectively add a Laplace noise (required for providing
𝜖-differential privacy) to every summation query count 𝑋𝑡

at time 𝑡, i.e., 𝑋𝑡 =
∑𝑘−1

𝑖=0 𝑋𝑖,𝑡. Next, we describe those
two basic blocks, i.e., the Laplace perturbation scheme and
encryption scheme.

B. The Laplace Perturbation Scheme

Before presenting the Laplace perturbation scheme, we
firstly give the introduction to differential privacy [6]. Differ-
ential privacy is proposed to protect the sensitive information
that needs to be released, and can also provide information-
theoretic guarantees that hold against computationally un-
bounded adversaries. It balances the tradeoff between privacy
protection and utility loss. The definition of differential privacy
is as follows.

Definition 1: Differential Privacy. A randomized function
𝑀 gives 𝜖-differential privacy (𝜖 is the privacy parameter) if
for all neighborhood dataset 𝐷1 and 𝐷2 differing in at most
one record, and all 𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀),

𝑃𝑟[𝑀(𝐷1) ∈ 𝑆] ≤ 𝑒𝑥𝑝(𝜖) ∗ 𝑃𝑟[𝑀(𝐷2) ∈ 𝑆] (1)

The Laplace Perturbation Scheme. Here, we want to
publish the output of a function 𝑓 in a differentially private

way. Dwork et al. [6] propose the Laplace perturbation scheme
to guarantee the 𝜖-differential privacy via adding suitably-
chosen noise to the value of 𝑓 . The noise is generated
according to the Laplace distribution. Within this manuscript,
we denote 𝐿𝑎𝑝(𝜆) a random variable drawn from the Laplace
distribution. The Laplace perturbation scheme first exactly
computes the accurate value of 𝑓 , and then perturb the value
by adding an independent noise 𝐿𝑎𝑝(𝜆). More formally, it
computes and outputs 𝑓 = 𝑓 +𝐿𝑎𝑝(𝜆). Differential privacy is
guaranteed if the parameter 𝜆 of the Laplace noise is calibrated
according to the sensitivity of 𝑓 , i.e., Δ. The below theorem
presented in [6] formalizes this intuition.

Theorem 1: For all 𝑓 : 𝔻→ ℝ
𝑟, the following mechanism

𝒜 is 𝜖−differential privacy: 𝒜(𝐷) = 𝑓(𝐷) +𝐿𝑎𝑝(Δ𝜖 ), where
𝐿𝑎𝑝(Δ𝜖 ) (𝜆 = Δ

𝜖 ) is an independently generated random
variable following the Laplace distribution and Δ denotes the
global sensitivity of 𝑓 .

In our aggregation system, 𝑓 is the summation function of
all parties’ private sensing data, i.e., 𝑋𝑡 =

∑𝑘
𝑖=1 𝑋𝑖,𝑡, and the

sensitivity Δ is the maximum value that an input can take.
According to Theorem 1, the proposed aggregation protocol
can be achieved in a differentially private way by perturbing
the output of 𝑓 by simply adding a Laplace noise 𝐿𝑎𝑝(𝜆) to
the output value of 𝑓 .

C. The Distributed Laplace Perturbation Scheme

Intuition. Here, our goal is to give a 𝜖-differential pri-
vate aggregation protocol in the distributed scenarios, while
resisting collusion atttacks without incurring extra error. To
this, the Laplace perturbation algorithm described above gives
the intuition that we can let just one designated party add
a Laplace noise to the final statistic without incurring any
extra error. But one problem coming along with this intuitive
solution is that since SDA knows this appointed one, he then
can corrupt with this party to violate other parties’ data privacy.

The Basic Collusion-tolerant Perturbation Scheme. Giv-
en that, we using the secret sharing propose an random select
algorithm (i.e., Alg.1) to randomly select a party responsible
for adding the Laplace noise, which ensures that only this
selected one knows that he is selected and no one else knows
about this. The proposed random select algorithm which let
all parties jointly select a party securely randomly is presented
in Alg.1.

In Alg.1, SDA assigns each party 𝑃𝑖 (𝑖 ∈ [0, 𝑘)) an unique
index 𝐼𝑖 randomly, and distributes each the index in 𝑘 secret
share form in ℤ𝑝 to all parties. Then, all parties using JRP𝑞

in [13] collectively produce a random number 𝑅 (𝑅 ∈ ℤ𝑝)
in secret share form. Via the modulo reduction technique
proposed in [13], the secret share of the random number 𝑅
is converted to modulo 𝑘. After that, each party 𝑃𝑖 uses the
secure equality test method in [13] to judge whether 𝑅 is
equal to 𝐼𝑖 or not. Note that, 𝑅 ∈ [0, 𝑘 − 1) and the index
for each party is different, so 𝑅 will only match one of 𝐼𝑖
(𝑖 ∈ [0, 𝑘)). Since none of the parties can gain knowledge
of the jointly created random number 𝑅, SDA will not be
able to determine which party is selected unless he happens
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Algorithm 1 RandomSelect(𝑆𝐷𝐴,𝑃 )

Require: 𝑆𝐷𝐴 : the sensing data aggregator
Require: 𝑃 : the distributed party set 𝑃 = {𝑃0, 𝑃2, ..., 𝑃𝑘−1}

1: SDA randomly assign an unique index 𝐼𝑖 ∈ [0, 𝑘) for each
party 𝑃𝑖 and splits each 𝐼𝑖 using secret sharing scheme
into 𝑘 secret sharing where each 𝑃𝑖 holds a secret share
of 𝐼𝑖

2: 𝑃 jointly create a random number 𝑅 using JRP, and each
𝑃𝑖 holds a secret share 𝑅𝑖

3: ModuloReduction(𝑅, 𝑘)
4: for 𝑖 = 0 to 𝑘 − 1 do
5: 𝑃𝑖 initiates secureEqualityTest(𝑅 and 𝐼𝑖)
6: if 𝑃𝑖 gets 1 from equality test then
7: 𝑃𝑖 is selected
8: end if
9: end for

to corrupt with the randomly selected party. The probability of
such a accidental successful collusion is only 1

𝑘 . Using Alg.1
to randomly select a party responsible for adding the Laplace
noise (i.e., 𝐿𝑎𝑝(𝜆)), the Laplace perturbation scheme can
provide differential privacy guarantee while resisting collusion
attacks with high probability.

The Improved Collusion-tolerant Perturbation Scheme.
And, due to infinite divisibility of Laplace distribution [14],
a Laplace distribution random variable can be computed by
summing up 𝑛 other random variables. So, we can use it
to further reduce the probability of such collusion attacks.
And, we denote those selected parties as 𝑃0, 𝑃1, ..., 𝑃𝑛−1. The
improved Laplace perturbation algorithm (i.e., Alg.2) picks 𝑛
parties via Alg.1, to let each selected party 𝑃𝑖 (𝑖 ∈ [0, 𝑛))
add an noise 𝜎𝑖,𝑡 = 𝒢1(𝑛, 𝜆) − 𝒢2(𝑛, 𝜆) to perturb his
data 𝑋𝑖,𝑡, such that 𝐿𝑎𝑝(𝜆) =

∑𝑛−1
𝑖=0 (𝒢1(𝑛, 𝜆) − 𝒢2(𝑛, 𝜆)),

where 𝒢1(𝑛, 𝜆) and 𝒢2(𝑛, 𝜆) are i.i.d gamma noise. Yet, those
reminding unselected parties don’t perturb their data.

Algorithm 2 The Improved Data Perturbation Algorithm

Require: 𝑆𝐷𝐴 : the sensing data aggregator
Require: 𝑃 : the distributed party set 𝑃 = {𝑃0, 𝑃1, ..., 𝑃𝑘−1}

and the dataset 𝑋𝑡 = {𝑋0,𝑡, 𝑋1,𝑡, ..., 𝑋𝑘−1,𝑡}
Require: 𝜖: the privacy parameter
Require: 𝑛: the number of parties who are selected to add an

noise 𝜎𝑖,𝑡 to his data 𝑋𝑖,𝑡

1: for 𝑖 = 0 to 𝑛− 1 do
2: RandomSelect(𝑆𝐷𝐴,𝑃 ): Randomly select a party 𝑃𝑚

(𝑃𝑚 ∈ 𝑃 )
3: This selected party 𝑃𝑚 adds a noise 𝜎𝑚,𝑡 = 𝒢1(𝑛, 𝜆)−

𝒢2(𝑛, 𝜆) to his data 𝑋𝑚,𝑡

4: end for

D. The Improved Encryption Scheme

The authors in [21] propose an aggregation encryption
scheme which don’t require all parties must be simultane-

ously online and interact with each other. In addition, their
encryption scheme can provide Aggregation Security at lower
communication cost and the parties’ secret keys can be kept
fresh, since each party’s secret key 𝐻(𝑡)𝑠𝑘𝑖 (𝑖 ∈ [0, 𝑘)) varies
with different time 𝑡, and 𝐻 denotes the hash function.

Yet, to compute the aggregation value 𝑋𝑡, the discrete log
needs to be computed, making it only supports polynomial-
sized plaintext spaces where decryption can be achieved
through a brute-force search. Even using Pollard’s lambda
method, decryption time is roughly square root in the plaintext
space.

Since discrete logarithm is computational expensive, we
instead using the modular property (1 + 𝑁)𝑚 = 1 + 𝑚𝑁
mod 𝑁2 propose the improved protocol which has below
steps:

∙ Setup(k,𝜆): A one-time setup algorithm, run by a trusted
dealer, takes two input parameters: the number of parties
𝑘, and a security parameter 𝜆 as inputs. The trusted
dealer randomly generates a modulus 𝑁 = 𝑝𝑞, which
is the product of two equal-size primes 𝑝, 𝑞. It outputs
the following:

(param, 𝑠𝑘𝑘, {𝑠𝑘𝑖}𝑖∈[0,𝑘))
where param are system parameters. Capability 𝑠𝑘𝑘 is
distributed to SDA, and 𝑠𝑘𝑖 (𝑖 ∈ [0, 𝑘)) is a secret key
distributed to party 𝑃𝑖(𝑖 ∈ [0, 𝑘)), such that 𝑠𝑘0 + 𝑠𝑘1 +
... + 𝑠𝑘𝑘 = 0. The parties will use their secret keys to
encrypt their data, and SDA will use its decryption secret
key 𝑠𝑘𝑘 to decrypt the sum. The setup step only need to
be performed once during the whole learning procedure,
which can largely reduce the cost.

∙ Encrypt(param,𝑠𝑘𝑖, 𝑋𝑖,𝑡): At time t, each 𝑃𝑖 first calcu-
lates (1 +𝑋𝑖,𝑡 ⋅𝑁) mod 𝑁2. Then the party multiplies
it by secret parameter 𝐻(𝑡)𝑠𝑘𝑖 to get the ciphertext 𝑐𝑖,𝑡:

𝑐𝑖,𝑡 = (1 +𝑋𝑖,𝑡 ⋅𝑁) ⋅𝐻(𝑡)𝑠𝑘𝑖 mod 𝑁2.
After that, he uploads the ciphertext 𝑐𝑖,𝑡 to SDA.

∙ Decrypt(param,𝑠𝑘𝑘, 𝑐0,𝑡, ..., 𝑐𝑘−1,𝑡): After receiving the
ciphertexts {𝑐𝑖,𝑡}𝑖∈[0,𝑘) from all parties, SDA then calcu-
lates the following 𝐶𝑡:
𝐶𝑡 = 𝐻(𝑡)𝑠𝑘𝑘 ⋅∏𝑘−1

𝑖=0 𝑐𝑖,𝑡 = 𝐻(𝑡)𝑠𝑘𝑘 ⋅∏𝑘−1
𝑖=0 (1 + 𝑋𝑖,𝑡 ⋅

𝑁) ⋅𝐻(𝑡)𝑠𝑘𝑖 = (1 +𝑁
∑𝑘−1

𝑖=0 𝑋𝑖,𝑡) mod 𝑁2

Then, the aggregator only needs to calculate (𝐶𝑡− 1)/𝑁
mod 𝑁 =

∑𝑘−1
𝑖=0 𝑋𝑖,𝑡 mod 𝑁2 to decrypt the final sum

∑𝑘−1
𝑖=0 𝑋𝑖,𝑡 (𝑋𝑖,𝑡 ∈ ℤ𝑁 ). Although two different modular

operations are used here, it does not affect the decryption.

The decryption time in the improved encryption scheme is
only 𝑂(1), while that in the naive encryption scheme proposed
in [21] is at least 𝑂(

√
𝑛Δ), which happens only when the

plaintext space is small. As for the large plaintext space,
the decryption time for this naive encryption scheme will be
inconceivable.

IV. THE PROPOSED AGGREGATION PROTOCOL

A. Computation of Sensitivity

Note that, the proposed aggregation protocol provide 𝜖-
differential privacy guarantee by adding a Laplace noise
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𝐿𝑎𝑝(𝜆 = Δ
𝜖 ), where the sensitivity Δ is set as Δ =

max(𝑋0,𝑡, 𝑋1,𝑡, ..., 𝑋𝑘−1,𝑡).

B. Protocol Description

The proposed protocol consists of following phases:
∙ Setup. Similar to the improved encryption scheme, each

party 𝑃𝑖 (𝑖 ∈ [0, 𝑘)) obtains the private key 𝑠𝑘𝑖 (𝑠𝑘𝑖), and
SDA obtains the capability 𝑠𝑘𝑘.

∙ RandomSelect. In this phase, 𝑛 parties are firstly selected
by the Alg.2 (i.e., the improved collusion-tolerant pertur-
bation scheme) to perturb their data. For simplicity, we
denote those 𝑛 selected parties as 𝑃 1 = 𝑃 1

0 , 𝑃
1
1 , ..., 𝑃

1
𝑛−1,

and those unselected ones as 𝑃 2 = 𝑃 2
𝑛 , ..., 𝑃

2
𝑘−1, such

that 𝑃 = 𝑃 1 ∪ 𝑃 2.
To ensure their 𝜖-differential privacy, each party 𝑃 1

𝑖 ∈ 𝑃 1

(𝑖 ∈ [0, 𝑛)) adds an noise 𝜎𝑖,𝑡 = 𝒢1(𝑛, 𝜆) − 𝒢2(𝑛, 𝜆) to
the original data 𝑋𝑖,𝑡 before encrypting them. So, the
perturbed data of P1

𝑖 ∈ 𝑃 1 is �̄�𝑖,𝑡 = 𝑋𝑖,𝑡+𝜎𝑖,𝑡 = 𝑋𝑖,𝑡+
𝒢1(𝑛, 𝜆)−𝒢2(𝑛, 𝜆). In contrast, those parties in 𝑃 2 don’t
perturb their data 𝑋𝑗,𝑡 (𝑗 ∈ [𝑛, 𝑘)). Here, some parties’
data might not be an integer, but can convert to an integer
by a specific designed scale, which doesn’t affect the final
aggregation results as long as all data do this.

∙ DataEnc. Using the improved encryption scheme, each
party 𝑃 1

𝑖 in 𝑃 1(𝑖 ∈ [0, 𝑛)) encrypts his perturbed data
�̄�𝑖,𝑡. Similarly, each party 𝑃𝑗 (𝑗 ∈ [𝑛, 𝑘)) in 𝑃 2 also
encrypts their original data 𝑋𝑗,𝑡. Here, we use 𝑐𝑖,𝑡 (𝑖 ∈
[0, 𝑛)) and 𝑐𝑗,𝑡 (𝑗 ∈ [𝑛, 𝑘)) to respectively represent the
ciphertexts of �̄�𝑖,𝑡 and 𝑋𝑗,𝑡.

∙ ResultDec. As soon as receiving the ciphertexts
(𝑐0,𝑡, 𝑐1,𝑡, ..., 𝑐𝑘−1,𝑡) from all parties, SDA then can ob-
tain the summation plaintexts 𝐶𝑡 = 𝐻(𝑡)𝑠𝑘𝑘

∏𝑘−1
𝑖=0 𝑐𝑖,𝑡.

That is to say, through the decrypt algorithm in
the encryption scheme, SDA can obtain: 𝐶𝑡 =
𝐻(𝑡)𝑠𝑘𝑘

∏𝑘−1
𝑖=0 𝑐𝑖,𝑡 =

∏𝑛−1
𝑖=0 (1 + �̄�𝑖,𝑡 ⋅ 𝑁)) ⋅∏𝑘−1

𝑖=𝑛 (1 +

𝑋𝑖,𝑡 ⋅𝑁) = (1 + (
∑𝑛−1

𝑖=0 �̄�𝑖,𝑡 +
∑𝑘−1

𝑖=𝑛 𝑋𝑖,𝑡) ⋅𝑁)

Note that, 𝑛 distributed parties in 𝑃 1 selected by the Alg.2
collectively add one copy of Laplace noise 𝐿𝑎𝑝(𝜆) to the
final summation statistic, and then the aggregator obtain the
perturbed summation �̄�𝑡 =

∑𝑘−1
𝑖=0 𝑋𝑖,𝑡 +

∑𝑛−1
𝑖=0 (𝒢1(𝑛, 𝜆) −

𝒢2(𝑛, 𝜆)) =
∑𝑘−1

𝑖=0 𝑋𝑖,𝑡 + 𝐿𝑎𝑝(𝜆).

C. Privacy and Security Analysis

1) Privacy of each party. For the insecure communica-
tion channels in our aggregation system, we design an
efficient encryption scheme to ensure each party’s data
privacy. The efficient encryption scheme used in the pro-
posed protocol is an improved version of the encryption
scheme proposed in [21]. According to the security proof
proved in [21], our designed efficient protocol meets the
aggregation obvious security notion.

2) Privacy of the Aggregate Statistic. In our aggregation
protocol, those selected parties are responsible for jointly
adding a Laplace noise to final aggregation result. And,
according Theorem 1, our aggregation protocol can pro-
vide 𝜖-differential privacy assurance. Meanwhile, no extra

error is incurred excepted the Laplace noise required for
providing 𝜖-differential privacy guarantee. Next, we via
a example show that the proposed aggregation protocol
can resist the collusion attack with high probability.
Here, we assume that Alg.2 randomly selects two parties
(i.e., 𝑛 = 2) to collectively add the calibrated Laplace
noise to provide the 𝜖-differential privacy guarantee.
When the adversary is SDA and he is able to collude
with the two selected parties, he then can gain access to
the true aggregation results. However, the random select
algorithm we propose can to a large degree bound the
probability of such a successful collusion attack. Since
neither the parties nor SDA can know which two parties
are selected, SDA can only randomly pick a party to
corrupt. Therefore assuming there are 𝑘 parties, and SDA
can only corrupt 𝐶 of them, then the probability for
SDA gaining access to accurate aggregation results is
𝐶(𝐶−1)
𝑘(𝑘−1) . More specifically, if SDA can control 100 out

of 1000 parties, he only has around 1% chance to learn
the true results. When the adversary is a party, he have to
firstly corrupt with SDA, since only SDA has the noisy
aggregation results. Once SDA is corrupted, the similar
analysis for SDA being an adversary applies, however if
the party cannot corrupt with SDA, he will have to corrupt
with all other parties in order to get accurate aggregation
results.
Therefore, under our attack model, the proposed aggrega-
tion protocol is most effective when the number of parties
is large, since the relative probability for adversaries to
gain accurate aggregation results in such a setting is
extremely small.

To sum up, the proposed protocol can provide both security
and 𝜖-differential privacy guarantee, and can also resist col-
lusion attacks with very high probability, while incurring no
additional error except the Laplace noise needed for ensuring
𝜖-differential privacy.

D. Discussion

In reality, distributed parties’ dynamic joins and leaves
should be well considered, which we solve via the interleaved
grouping technique. Those two problem, malicious modifica-
tion and data pollution, also need to be considered. Due to the
limited space, we will leave their detailed introduction to the
full paper.

V. PERFORMANCE ANALYSIS

A. Theoretical Analysis

The proposed aggregation protocol via Alg.2 allows 𝑛
randomly selected parties jointly add exactly a Laplace noise
𝐿𝑎𝑝(𝜆 = Δ

𝜖 ) to every period aggregation summation (i.e.,
𝑋𝑡). More specifically, each selected party incorporates a
noise (𝒢1(𝑛, 𝜆) − 𝒢2(𝑛, 𝜆)) into his data 𝑋𝑖,𝑡, such that
𝐿𝑎𝑝(𝜆) =

∑𝑛−1
𝑖=0 (𝒢1(𝑛, 𝜆)−𝒢2(𝑛, 𝜆)). According to Theorem

1, the proposed aggregation protocol is 𝜖-differential private.
Additionally, the added Laplace noise remains independent of
the number of distributed parties.
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Fig. 1: Classification accuracy comparison between PPNB
and SNB

B. Practical Performance

Naive Bayes, one of the widely used classification algo-
rithms (e.g., Adaboost [23], Support Vector Learning [9]), is
of great use in performing the knowledge discovery, especially
in the mobile crowdsensing scenarios [19]. Here, we use
the proposed aggregation protocol to perform the privacy-
preserving Naive Bayes (PPNB for short) learning over the
horizontally partitioned dataset [22].

In experiments, we compare the classification performance
between: standard Naive Bayes (SNB for short) and PPNB.
Fig.1 shows simulation results on the dataset Car Evaluation
[16]. We vary the number of samples 𝑛, and compare their
practical utility (i.e., classification performance) under fixed
privacy parameters (𝜖 = 0.1, 0.2, 0.3, 0.4 respectively). For
each 𝑛, we average and record the ten-fold cross-validation
accuracy over 2000 runs, since it is a randomized algorithm.
The simulation shows that PPNB has comparable or even
batter classification performance when compared with SNB,
especially when the number of samples increases. From Fig.1,
we can clearly see that the larger 𝜀 is, the better classification
performance PPNB have.

VI. CONCLUSION

In this paper, we propose a 𝜖-differential privacy aggregation
protocol, which can resist collusion attacks without incurring
extra error and requiring the priori estimation on those collud-
ed parties, and along with give an efficient encrypt scheme to
make it secure under insecure communication channels, and
lastly make some practical extensions. The experimental re-
sults show that the proposed aggregation protocol are effective
to be applicable in practice.
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