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such as the European Union’s General Data Protection Regula-
tion (GDPR) and the former Right to be Forgotten [8] also give
users the right to eliminate their data from the trained model
as if they never existed in the training dataset. Nowadays, bad
patient data (e.g., polluted data in poisoning attacks [20] or
outliers) can seriously degrade the performance of the trained
patient similarity models. Once these data are detected, the
model needs to forget them to regain utility. Therefore, it is
important to design efficient techniques that enable patient
similarity models to forget what has been learned from the
patient samples to be removed.

To remove patient samples from a trained patient similarity
model that need to be forgotten, a straightforward approach is
to simply train a new patient similarity model from scratch
on the remaining dataset (i.e., excluding the samples that
need to be erased) following the original training procedure
of patient similarity learning. However, such a retraining
method comes at a high computation cost and is thus not
practical when adopting large-scale data and accommodating
frequent removal requests. To address this problem, several
exact machine unlearning methods [1], [4], [5] have been
proposed, among which the SISA method proposed in [1] is
the most general one. The basic idea of SISA is to randomly
split the training dataset into several disjoint shards and train
each shard model separately. Upon receiving an unlearning
request to remove a specific sample, the model provider only
needs to retrain the corresponding shard model.

However, existing machine unlearning methods cannot be
directly applied to patient similarity learning tasks, since they
fail to capture the important relationships among the patient
samples. Specifically, since patient similarity learning relies
on the relative comparative information among the training
patient samples to learn the patient similarity model, randomly
partitioning the training patient samples into subsets could
severely damage the resulting model utility. The primary issue
concerning the traditional sampling strategies is the lack of
informative patient samples for training. If we directly follow
existing methods to sample the patient pairs, a large fraction
of patient samples may satisfy the constraints imposed by the
loss function and provide no supervision information for the
training model. In addition, the aggregation methods proposed
in existing unlearning methods fail to identify the optimal
conditions of the local objective functions.

To address the above challenges, for the first time, we

Abstract—Patient similarity learning aims to use patient infor-
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it is becoming increasingly important in healthcare applications. 
However, in many cases, patient similarity learning models also 
need to forget some patient data. From the perspective of privacy, 
patients desire a tool to erase the impacts of their sensitive data 
from the trained patient similarity models. From the perspective 
of utility, if a patient similarity model’s utility is damaged by some 
bad patient data, the patient similarity model needs to forget such 
patient data to regain utility. Although some researchers have 
studied the problem of machine unlearning, existing methods 
cannot be directly applied to patient similarity learning as they 
fail to consider the comparative relationships among patients. 
In addition, they also fail to identify the optimal conditions of 
the local objective functions. In this paper, we fill in this gap by 
studying the unlearning problem in patient similarity learning. 
To unlearn the knowledge of a specific patient, we propose a novel 
erasable patient similarity learning framework, which enjoys the 
provable data removal guarantee and achieves high unlearning 
efficiency while keeping high model utility in patient similarity 
learning. We also conduct extensive experiments on real-world 
patient disease datasets to verify the desired properties of the 
proposed erasable framework.
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I. INTRODUCTION

Patient similarity learning [26], [27] aims to learn a clin-
ically meaningful distance metric to measure the similarity
between patient pairs represented by their key clinical indi-
cators. With the learnt patient similarity metric, physicians
can perform different tasks. For example, in personalized
medicine, physicians can retrieve a cohort of similar patients
for a target patient to make medical comparisons and make a
personalized treatment plan effectively [2], [22], [23]. In dis-
ease sub-typing, physicians identify sub-types of diseases (e.g.,
distinct subtypes of type 2 diabetes) by identifying clinically
homogeneous patient subgroups [29]. In personalized medical
prediction (e.g., mortality prediction in intensive care units),
physicians can utilize patient similarity to boost the power of
the model by using only patients most similar to the target
patient in model training [9], [17].

However, in many cases, a patient similarity learning model
also needs to forget certain sensitive data and its complete
lineage. Consider privacy first, recent studies have shown that
patients’ sensitive information could be leaked from the trained
models [15], [18], [30]. In practice, recent privacy legislation
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in this paper propose a novel erasable patient similarity
learning framework, namely PatEraser, which can achieve
high unlearning efficiency while keeping high model utility
in patient similarity learning. Specifically, in order to keep
the informative comparison relationships among patients, we
first design a novel data partition strategy based on the
informative comparison relationships, which can divide the
training patient samples into multiple informative shards. After
splitting patient data into multiple smaller informative subsets,
we apply the basic discriminative patient similarity learning to
each of the subsets to train the submodels. Then, we design
a novel aggregation strategy based on the optimal conditions
of the local objective functions of patient data shards. The
separately learned submodels are summarised into the final
result via the proposed aggregation procedures. The algorithm
of the aggregated patient similarity learning model scales well
with the data size and can be controlled by the partition.
We also conduct extensive experiments to verify the desired
performance properties of the proposed PatEraser.

II. RELATED WORK

Patient similarity learning has become a hot topic in recent
years, with many researchers using patient similarity as a tool
to enable different healthcare tasks [6], [9], [12]–[14], [33].
For example, the authors in [17] utilize the cosine similarity
metric to identify similar patients for the downstream 30-
day mortality prediction based on the MIMIC-II database. [6]
utilizes the Euclidean distance-based metric to select similar
patients for anomaly detection and characterization on the
basis of numeric laboratory data. However, existing methods
fail to remove the impact the patient data in the training set
had on the final patient similarity learning model.

The emergence of the right to be forgotten gave birth to
a paradigm named machine unlearning, which enables data
holders to proactively erase their data from a trained model [7],
[28]. Specifically, machine unlearning refers to a process that
aims to remove the influence of a specified subset of training
data upon request from a trained model at a cheaper computa-
tional cost than fully retraining those models. Currently, many
different machine unlearning methods have been proposed [1],
[10], [19], [21], [25], [31], [32]. However, existing machine
unlearning methods cannot be directly adopted here, since they
fail to either provide the provable guarantee or capture the
important relationships among patient samples.

III. METHODOLOGY

A. Problem Formulation

We are concerned with the task of patient similarity learn-
ing. Patient similarity learning aims to develop computational
algorithms for defining and locating clinically similar patients
to a query patient under a specific clinical context. Let H =
{(xi, yi)}Ni=1 be the training dataset of N labeled patients with
patient samples xi ∈ RD and class labels yi ∈ {1, · · · , C}.

For the labeled patients in the training datasetH, we can derive
the following two sets of pairwise constraints:

S = {(xi,xj)| xi and xj are in the same class} (1)
D = {(xi,xj)| xi and xj are in two different classes}

where S is the set of similar pairwise constraints, and D is
the set of dissimilar pairwise constraints. In patient similarity
learning, the distance between any two patients xi,xj ∈ RD

is calculated as

d2
W (xi,xj) = ||xi − xj ||2W = (xi − xj)

TW (xi − xj) (2)

where W ∈ RD×D is the Mahalanobis metric, a symmetric
matrix of size D×D. Note that W is a positive semi-definite
matrix (i.e., W � 0) to satisfy the properties of metric (e.g.,
non-negativity and triangle inequality). Note that the constraint
W � 0 is implicitly satisfied because of the decomposition
W = MMT . Patient similarity learning can be cast as an
optimization problem with pairwise constraints. We focus on
learning the similarity metric W = MMT by leveraging
the similar and dissimilar pairwise relations in S and D. In
patient similarity learning, we learn the similarity metric so
that the distances of similar patients become smaller and the
distances of dissimilar patients become larger. Specifically,
given a triplet (xi,xj ,xk), patient similarity learning aims
to learn a good similarity metric such that patients from the
same class are closer than patients from different classes, i.e.,

∀(i, j, k), d2
W (xi,xk)− d2

W (xi,xj) ≥ 0, (3)

where xi and xj are from the same class and xk is from a
different class. For a given triplet (xi,xj ,xk), (xi,xj) have
the same class labels and (xi,xk) have different class labels.

In this work, we frame the problem of data deletion in
patient similarity learning as follows. Suppose a patient sim-
ilarity learning model is trained on N patient samples (i.e.,
{(xi, yi)}Ni=1). For example, the patient similarity learning
model could be trained to perform disease diagnosis from
data which are collected from N patients. To delete the data
sampled from the i-th patient (i.e., xi) from the trained patient
similarity learning model, we would like to update it such that
it becomes independent of patient xi, and looks as if it had
been trained on the remaining N − 1 patients. Formally, the
task of patient similarity unlearning is to achieve the following
three general objectives:
• Provable Guarantee. It is the basic requirement of

unlearning which demands the revoked patient data must
be really unlearned and not influence model parameters.

• High Unlearning Efficiency. The unlearning process of
forgetting the required data should be as fast as possible.

• Comparable Performance. The performance of the un-
learned patient similarity model should be comparable to
that of retraining from scratch.

B. Proposed Method

Overview. In order to address the above challenges of
unlearning in patient similarity learning, we propose PatEraser,
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which consists of the following three phases: data partition,
submodel training, and optimal aggregation. Specifically, the
data partition part is designed to divide original patient data
while preserving the comparative information among the pa-
tients. Upon partitioning the training patient data into shards, a
submodel is trained for each of the data shards. All submodels
share the same model architecture. The model owner can train
submodels in parallel to speed up the training process. At the
prediction phase, an optimal aggregation strategy is applied to
obtain the aggregated patient similarity learning model while
satisfying the optimal conditions of the local objective func-
tions. For each incoming test patient, its prediction result can
be derived from the aggregated model. When one patient data
needs to be unlearned, only one of the submodels whose shard
contains the patient data to be unlearned and the aggregation
part need to be retrained, which is much more efficient than
retraining the whole patient similarity learning model from
scratch. Next, we will detail each phase.

Data partition with informative comparison relation-
ships. Note that patient similarity learning aims to maximize
the inter-class distance and minimize the intra-class distance
by using the comparison information among the training
patient data. As we have mentioned before, the training data
used for patient similarity learning tasks usually contains rich
comparative information. Randomly dividing the patient data
can result in a lack of informative samples for training. In order
to address this challenge, we propose a novel data partition
mechanism for patient similarity learning. Specifically, we first
randomly sample P patients of each class. We use P to denote
the set of sampled P patient samples. In this way, since there
are C classes, the total number of the local data shards is
K = PC, where P is the number of randomly sampled
patients for each class. Then, for each given patient xi in
the k-th shard, we will construct the informative shards, each
of which consists of a number of challenging patients that
carry discriminative information for patient xi. In order to
achieve this goal, for the k-th shard, we first select N+

k most
challenging positive patients H+

k , which are from the same
class as patient xi. Note that for the given patient xi in the
first shard, its hardest positive patient is defined as follows

(x+
i , y

+
i ) = arg max

xj∈H/P,xj 6=xi,yj=yi

||xi − xj ||22, (4)

where H is the set of training patients. Then, for the k-th
shard, we select N−k nearest neighbours H−k from different
classes. For the given patient xi in the first shard, the hardest
negative patient is defined bellow

(x−i , y
−
i ) = argmin

xj∈H/P,xj 6=xi,yj 6=yi

||xi − xj ||22. (5)

The k-th shard, Hk, is the joint of {(xi, yi)} ∪ H+
k ∪ H

−
k ,

where H+
k and H−k are of size N+

k and N−k , respectively.
In this way, for the data shards, we can mine the most
valuable comparable information and select pairs of patients
that provide the greatest violation of the pairwise constraints.

Submodel training. Here, we aim to train the submodels by
incorporating discriminative information (i.e., the informative

relative comparison relationships among the patients) available
in the shards. Let Wk = MkM

T
k denote the submodel for

the k-th shard (i.e., Hk), which is trained using the entirety
of the patient data available in k-th shard (Hk). Note that the
learned patient similarity learning model ensures that patients
with the same label from physician’s feedback are close while
the patient with different labels is away from each other. For
each shard Hk, we use X+

k and X−k denote the feature matrix
for H+

k and H−k , respectively. Then, based on X+
k and X−k ,

we can calculate the following two matrices

Σ
X

+
k

=
∑

xj∈X+
k

(xi − xj)(xi − xj)
T , (6)

Σ
X

−
k

=
∑

xj∈X−
k

(xi − xj)(xi − xj)
T . (7)

Next, we will set up the learning objective locally such that the
trained submodels can encode the discriminative information
and the local geometric structure of the patient data in the
shards. The basic idea here is to maximize the distance
between patients if they do not belong to the same distribution
and instead minimize the distance between them if they belong
to the same distribution. Specifically, for the k-th submodel, it
can be derived by solving the following optimization problem

Mk = arg min
Mk

`(Mk) = {
∑

j∈N+
k

||MT
k (xi − xj)||2 (8)

−
∑

j∈N−
k

||MT
k (xi − xj)||2}

= arg min
Mk

{Tr(MT
k ΣX+

k
Mk)− Tr(MT

k ΣX−
k
Mk)}

= arg min
Mk

Tr(MT
k RkMk),

where Tr(·) denotes the trace of matrix, and Rk =
(ΣX+

k
− ΣX−

k
) and ||MT

k (xi − xj)||2 = ||MT
k xi −

MT
k xj ||2 = (MT

k xi −MT
k xj)(M

T
k xi −MT

k xj) = (xi −
xj)

TMkM
T
k (xi−xj). The above loss aims to minimize the

distances of similar patients and maximizes the distances of
dissimilar patients. The local criterion of submodels on shards
is motivated by encoding discriminative information into the
geometry induced by the objective metric.

Note that when the model owner receives a request to delete
a new patient data, it just needs to retrain the local submodel
whose shard contains this patient data. If the center patient
sample in the k-th sample is deleted, we will select the new
center patient sample xk

i as follows

xk
i = argmin

xi∈H+
k ∪H

−
k

{
∑

xj 6=xi,yj 6=yi

||(xi − xj)||2 (9)

−
∑

xj 6=xi,yj=yi

||(xi − xj)||2}

where xj ∈ H+
k ∪ H

−
k /xi. In the above, H+

k and H−k are of
size N+

k and N−k , respectively. In this way, we can ensure
that a large fraction of patient samples in this shard do not
have the constraints imposed by the loss function and provide
plentiful supervision information for the training model.
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Aggregation. The next task is to aggregate the local solu-
tions (i.e., {Mk}Kk=1) into a global patient similarity metric
MA. The most naive straightforward method is to linearly
combine the local solutions. However, {Mk}Kk=1 are solutions
to locally defined optimization problems over the patient
data shards and the linear combination can damage their
optimality and yield invalid solutions. In order to address
this challenge, we design the aggregation strategy based on
the optimal conditions of the objective functions. Recall that
a submodel Mk is a stationary point of the corresponding
objective function (`k(Mk)), i.e.,

∂`k(Mk)

∂Mk
= 2(ΣX+

k
− ΣX−

k
)Mk = 0,∀k ∈ [K], (10)

where [K] ∈ {1, · · · ,K} and `k(Mk) is defined in Eqn.
(8). For a global solution MA, it is ideal for it to fulfill
the optimal conditions of the objective functions in all local
patient data shards, which is generally impossible. Therefore,
we propose to cancel out the violations among all the patient
data shards by vanishing the summation of the local gradients
of the submodels, which is given as follows

K∑
k=1

(ΣX+
k
− ΣX−

k
)MA = 0, (11)

where WA = MAM
T
A denotes the aggregated model. By

combining Eqn. (10) and (11), we can derive the following

K∑
k=1

(ΣX+
k
− ΣX−

k
)Mk −

K∑
k=1

(ΣX+
k
− ΣX−

k
)MA = 0, (12)

⇒MA =

K∑
k=1

(ΣX+
k
− ΣX−

k
)∑K

k=1(ΣX+
k
− ΣX−

k
)
Mk, (13)

where Mk denotes the k-th submodel. From the above, we
can see that the aggregated patient similarity model has the
form of the weighted submodels, where the weight of the k-

th submodel is ωk =
(Σ

X
+
k
−Σ

X
−
k

)∑K
k=1(Σ

X
+
k
−Σ

X
−
k

)
. And the aggregated

patient similarity learning model is the weighted sum of the
local submodels, which is given as follows

MA =

K∑
k=1

(ΣX+
k
− ΣX−

k
)∑K

k=1(ΣX+
k
− ΣX−

k
)
Mk. (14)

When the model owner receives a request to delete a new
patient data, it just needs to retrain the local shard model
whose shard contains this patient data, leading to a significant
time gain with respect to retraining the whole model from
scratch. Then we can aggregate these local patient similarity
learning models based on the above equation.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. In experiments, we adopt three real-world patient
datasets and a synthetic dataset to measure the performance
of the proposed method (PatEraser). The Diabetes health

indicators dataset consists of 70,692 survey responses to
CDC’s BRFSS2015 [3]. The target variable has 2 labels, where
label 0 denotes no diabetes and label 1 denotes prediabetes
or diabetes. The Cardiovascular disease dataset [11] is a
collection of 69,301 patient data used to predict the presence
or absence of cardiovascular disease. The input features are
collected from factual information and medical examination
results. The Heart disease health indicators dataset contains
253,680 patients, and the features in this dataset are collected
from cleaned BRFSS2015 [3]. It can be primarily used for the
binary classification of heart disease. The Synthetic dataset
is a randomly distributed binary classification dataset gener-
ated using Scikit-learn [24] dataset module. We initialize the
classification dataset for 10 input features with no duplicate
or redundant features, for a total of 100,000 samples. The
details of the adopted datasets are reported in Table I. Note
that patient datasets are from the Kaggle dataset repository 1.

TABLE I: Details of the adopted datasets in experiments.

Dataset # patients # features
Diabetes 70,692 21

Cardiovascular 69,301 11
Heart Disease 253,680 21

Synthetic 100,000 10

Baselines. We compare the proposed approach with three
state-of-the-art baselines. Retrain is the most straightforward
machine unlearning method, which removes the revoked sam-
ples and retrains the entire model. It is treated as a base
benchmark. Average follows the ideas of the state-of-the-art
machine unlearning method [1], which randomly splits the
training data into shards and then aggregates the results of
all submodels by averaging to make the final prediction. The
Random method randomly selects a model from all local
submodels and treats it as the aggregated model.

Performance metrics. In experiments, we adopt the fol-
lowing evaluation metrics: unlearning time for unlearning ef-
ficiency, recall@1 and recall@2 for classification performance.
Unlearning time measures the retraining time of models after
requesting unlearning samples. Recall@1 and recall@2 mea-
sure whether the ground truth is ranked among the top-1 item
or top-2 items, respectively.

Training. In experiments, we employ the Adam [16] opti-
mizer with a learning rate of 0.01 for ParEraser and train 100
epochs on adopted datasets. The batch size setting in each
submodel training is the corresponding shard size.

B. Experimental Results

Unlearning efficiency. In this section, we conduct experi-
ments to investigate the unlearning efficiency of the proposed
method (PatEraser). Specifically, we set the shard number to
20 and randomly sample 1 patient data to be forgotten from the
training data. The derived experimental results are reported in
Table II. We can observe that the proposed PatEraser can sig-
nificantly improve the unlearning efficiency compared to the

1https://www.kaggle.com/datasets
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TABLE II: Unlearning efficiency comparison for removing 1 data sample. For PatEraser (20 shards), when receiving an
unlearning request of data, only the corresponding submodel and the aggregation part need to be retrained.

Dataset Diabetes Cardiovascular Heart Disease Synthetic

Training Size 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

Retrain (s) 75 149 220 298 70 142 210 293 362 723 1090 1435 146 282 421 547

PatEraser (s) 0.8 1.0 1.3 1.6 0.8 1.0 0.2 1.5 1.3 2.2 3.2 4.2 0.8 1.1 1.3 1.8

TABLE III: Classification performance comparison of dif-
ferent baselines. We apply 20 shards for the Average and
PatEraser methods, and report recall@K (%) for all methods.

Dataset Diabetes Cardiovascular Heart Disease

Recall R@1 R@2 R@1 R@2 R@1 R@2

Retrain 64.19 82.11 63.35 81.28 85.35 92.68

Average 64.53 82.31 63.31 81.67 85.33 92.69

Random 64.72 82.36 62.90 81.57 85.23 92.51

PatEraser 65.13 82.67 63.89 81.73 85.60 92.72

Retrain method. For example, on the Cardiovascular dataset
and the Heart disease dataset with both 80% training sizes, the
proposed PatEraser only needs 1.5 seconds and 4.2 seconds
to achieve the optimal performance, respectively, while the
Retrain method needs about 293 seconds and 1435 seconds,
respectively. This acceleration is 195× for the Cardiovascular
dataset and 341× for the Heart disease dataset, which is
highly valuable in practice and is difficult to achieve through
simple engineering effects. The main reason is that in the
proposed PatEraser, only the corresponding submodel and the
aggregation part need to be retrained to forget the requested
data. Therefore, even for large datasets and a high training
scale, the unlearning time is still incredibly fast. From the
shard-based perspective, we can tolerate more shards for larger
datasets to further improve the unlearning efficiency while
preserving the patient similarity performance.

Classification performance. Next, we evaluate the classi-
fication performance of the proposed PatEraser. Specifically,
the shard number is set to 20 for PatEraser and Average
methods. The obtained classification results are shown in Table
III. We can observe that on the adopted patient datasets,
the proposed PatEraser can achieve a better classification
performance compared to the baselines. For example, on
the Diabetes dataset, the recall@1 of PatEraser is 65.13%,
while the corresponding result of the Average baseline is
64.53% and the Random baseline is 64.72%. Similarly, the
substantial classification improvement is due to the fact that we
partition the patient data by preserving the relative comparison
information among the patient samples and differentiating the
importance scores of different submodels in aggregation. In
addition, the Retrain method can achieve similar classification
results but its unlearning efficiency is extremely low when
the original dataset is large. Therefore, we can derive the
conclusion that the classification performance of the proposed
PatEraser is better than the baselines.
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Fig. 1: Impact of the shard number on the unlearning efficiency
(unlearning 1 data sample) and model performance (recall@1)
on the experiment datasets.
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Fig. 2: Impact of the unlearned patient samples on the unlearn-
ing efficiency (20 shards) and model performance (recall@1
after unlearning) on the experimental datasets.

Impact of the shard number. Furthermore, we conduct
experiments on the adopted datasets to investigate the impact
of the shard number. As shown in Figure 1 (a), the unlearning
time decreases when the number of shards increases for the
proposed PatEraser model on all experiments. This makes
sense since a larger number of shards means a smaller shard
size for each submodel, which will improve the unlearning ef-
ficiency. As shown in Figure 1 (b), the model performance may
slightly decrease when the shard number is too small (e.g.,
2 shards) or the shard number is too large. This is because
patient similarity submodels require comparison information
for model learning. A small shard means the comparison
information may not diverge; a large shard but small shard
size means the comparison information may not strong.

Impact of the unlearned patient samples. Lastly, we con-
duct experiments to study the impact of the unlearned patient
samples. Figure 2 (a) illustrates the impact on the unlearning
efficiency. The results suggest that before a particular number
of unlearned samples (related to the number of shards), the
unlearning time increases rapidly, then slowly decreases after
that. The reason is that the unlearning time is determined
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by the number of submodels that need to be retrained. As
the number of unlearned samples increases, there is a greater
chance that more submodels need to be retrained, and hence
the unlearning time increases. Once all submodels are required
to be retrained but the shard size is reduced, the unlearning
time will be decreased. Figure 2 (b) summarizes the impact
on the model performance, in which we examine recall@1
for PatEraser. We observe that PatEraser is robust to patient
similarity unlearning, even when the unlearned samples reach
10,000 of the training data.

V. CONCLUSION

In this paper, we propose a novel PatEraser framework,
which is, to the best of our knowledge, the first machine
unlearning method for patient similarity learning. To permit
efficient unlearning while keeping the comparison information
of the patient data in different data shards, we first design
a novel data partition strategy to keep the informative com-
parison relationships among the patients. Then, based on the
optimal conditions of the local objective functions, we propose
an adaptive aggregation method to improve the global model
utility. We also conduct extensive experiments to verify the
effectiveness of the proposed method.
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