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Abstract—In recent years, using functional magnetic resonance
imaging (fMRI) data to infer brain effective connectivity (EC)
between different brain regions is an important advanced study
in neuroinformatics. However, current methods always perform
not well due to the high noise of neuroimaging data. In this
paper, we propose an effective connectivity learning method with
deep reinforcement learning, called EC-DRL, aiming to more
accurately identify the brain effective connectivity from fMRI
data. The proposed method is based on the actor-critic algo-
rithm framework, using the encoder-decoder model as the actor
network. More specifically, the encoder adopts the Transformer
model structure, and the decoder uses a bidirectional long-short-
term memory network with an attention mechanism. A large
number of experimental results on simulated fMRI data and real-
world fMRI data show that EC-DRL can better infer effective
connectivity compared to the state-of-the-art methods.

Index Terms—Brain effective connectivity, deep reinforcement
learning, encoder-decoder model, bidirectional long-short-term
memory network, fMRI time series.

I. INTRODUCTION

Recently, learning brain effective connectivity (EC) which is
the interaction of brain regions at the neural level has become
a frontier subject. Since it not only is crucial to evaluate brain
function but also has a strong relation with neurodegenerative
diseases, e.g. Parkinson’s disease and Alzheimer’s disease
[3], [5]. There are substantial efforts on analyzing the causal
relations of the brain regions or regions of interest (ROI)
with neuroimaging data, e.g., functional magnetic resonance
imaging (fMRI) data [6]–[8]. And the effective connectivity
between the brain regions can be seen as directed edges in
a causal graph (directed graph) where nodes denote brain
regions [9]. Hence, learning brain effective connectivity can
be turned into a problem that discovering a causal graph from
fMRI time series data.

Causal graph inferring has made considerable progress over
the past few decades. PC algorithm [12] is a classic constraint-
based algorithm that first learned the skeleton of the causal
structure through the independence test, and then determines
the directions of edges using colliders. And greedy equivalence
search (GES) [1] is another widely used score-based method.
GES starts with a graph with no edge, instead of beginning
with a complete undirected graph, like the PC algorithm.
Then GES continuously adds edges to the graph and removes
unnecessary edges to maximize a properly defined score that
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can evaluate the generated graph. The functional Causal Model
(FCM) where the functions are assumed to denote the causal
mechanisms in variables is an emerging method in casual
discovery. FCM does not need strong assumptions and Linear
Non-Gaussian Acyclic Model (LiNGAM) is the first FCM
method proposed by Shimizu et al [10].

In the last decade, deep learning is one of the fastest-
growing fields. And many researchers try to apply deep
learning techniques to causal graph inferring. In 2018, Zheng
et al [17]. proposed the continuous optimization for structure
learning (NO TEARS) method which first turns the causal
discovery problem from a combinatorial optimization problem
into a continuous optimization problem so that the causal
relations can be solved more efficiently. And empirically, the
results are close to the optimal solution. And a year later,
Yue et al [14] extend Zheng’s method to the nonlinear case.
Gradient-Based Neural DAG Learning (DRAN-DAG) method
proposed by Lachapelle et al, which combines score-based
methods with deep learning to infer causal relations. Zhu et
al. [18] firstly use reinforcement learning method to solve the
causal discovery problem. However, the performance of deep
learning methods is not as good as traditional statistic methods
on estimating brain effective connectivity.

In this paper, we propose a brain effective connectivity
learning method with deep reinforcement learning, named EC-
DRL. The new method employs BiLSTM with an attention
mechanism [13] as a decoder in the actor to better recover the
causal graph from fMRI data, which improves the authenticity
of the generated data. We have tested our model on both
simulation data and real data, and the experimental results
show that the proposed method has certain advantages in
performance compared with existing state-of-the-art methods.

II. METHODOLOGY

In this section, we put forward our proposed novel model,
i.e., EC-DRL, which can estimate brain effective connectivity
from fMRI time series data. Specifically, we first give an
overview of the proposed EC-DRL, and then describe the
details of the main components.

A. EC-DRL Architecture

In the proposed method, we propose to integrate the Actor-
Critic algorithm into brain effective connectivity learning and
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design a novel effective connectivity learning method (i.e., EC-
DRL) based on the deep reinforcement learning method. There
are three crucial parts in the proposed EC-DRL framework:
actor, critic and reward. In the following, we will show the
details of the three components.

Actor. The actor component is an encoder-decoder model,
which takes noise variables and real fMRI time series data as
input and generates directed graphs (graph adjacency matri-
ces). Since the encoder-decoder model can naturally extract
contextual information, it is very suitable for processing the
fMRI time series data. Below, we will describe the adopted
Encoder and Decoder.

• Encoder. The encoder based on the Transformer model.
In detail, after embedding the inputs by a linear layer, the
embedded input will be processed by multiple identical
encoder blocks, and each encoder block is made up of a
multi-head self-attention layer and a feedforward layer.
We believe that multi-head self-attention can perform
the task of extracting information from fMRI data very
well. Importantly, compared with self-attention, it reduces
the dependence on external information and can better
capture the internal correlation in the data. Given the
fMRI data X , the operation of the encoder blocks are
given as follows:

Qh = WQX ′h + biasQ,

Qh = WKX ′h + biasK ,

Vh = WV X ′h + biasV ,

(1)

where X ′ denotes the embedded input and X ′h denotes
the h-th input after dividing the embedded input X ′ into
H groups. Qh, Qh, Vh denote query, key and value of the
h-th input respectively. Then self-attention is calculated
as follows:

SelfAttnh = softmax(
QhKh

t√
DKh

)Vh, (2)

where D represents the number of elements in the last
dimension of K. Then, we can get multi-head attention by
concating all H groups of self-attention, which is given
as follows:
MultiHead = Concat(SelfAttn1, ..., SelfAttnH).

(3)

And the result of multi-head attention will go through a
feedforward layer which consist of 2 liner layer and a
ReLU activation.

Block = ReLU(MultiHeadW1 + bias1)W2 + bias2.
(4)

• Decoder. The decoder we chose is Bi-directional Long
Short-Term Memory (BiLSTM) [16]with an attention
layer, since it not only has a strong ability of global
information modeling but also can solve the problems
of gradient disappearance and gradient explosion in the
process of long sequence training. The BiLSTM model
is made up of multiple LSTM cells.

The process of the BiLSTM model consists of two layers:
the forward layer and the backward layer. Specifically, the
forward layer, from time step 1 to T , updates the long-
term memory and stores the hidden state. And given the
encoder output enct of the t-th time step, the hidden state
can be represented as follows:

−→
Ht = f(enctW1

(f) +
−−−→
Ht−1W2

(f) + bias(f)), (5)

where W1
(f),W1

(f) and bias(f) are parameters of the
forward layer and function f denotes the LSTM model.
The process of the backward layer is same to the process
of the forward layer, except the time step is from T to 1:

←−
Ht = f(enctW1

(b) +
←−−−
Ht−1W2

(b) + bias(b)), (6)

where W1
(b),W1

(b) and bias(b) are parameters of the
backward layer. After concatenating the hidden state of
both layers, we will get the hidden state of the BILSTM.
The output can be represented by the following formula

Ot = [
−→
Ht,
←−
Ht]W + bias. (7)

Critic. The critic we use is a 2-layer feed-forward neural
network with a ReLU activation function. The input of the
critic network is the encoder output. And the loss function is
the mean-square error between its output and the true rewards
of the actor network.

In the training, we find that the critic network can be
replaced by an exponential moving average, which is a method
that estimates the local mean of a variable. In this way, the
update of the variables is related to the historical values over
a period of time. This approach can improve the robustness of
the model. Its mathematical expression is given as

Vt = αVt−1 + (1− α)St, (8)

where α ∈ (0, 1), and St is the value in the t-th time step. This
method can reduce a certain running time without affecting
the results. The reason is that the critic network is too simple,
which means its role is limited. And the exponential moving
average can be seen as a simplification of the critic network.

Reward. Reward is to measure the matching degree be-
tween the brain effective connectivity network and the fMRI
data. Therefore the goal of the actor network or the entire
network is to maximize the reward. Note that the Bayesian
information criterion score (BIC) is widely used in score-based
causal discovery methods. It is not only consistent but also
locally consistent for its decomposability. Therefore, motivated
by this, we choose BIC as our reward function which will be
maximized by our actor. To better discover DAGs, we propose
to add a acyclicity constraint to the reward. In this work, we
use the acyclicity constraint proposed by Zheng et al [17].
Hence, our reward can be represented as follows

reward(G) = −[BIC(G) + λA(M)], (9)

where λ ≥ 0 is a parameter that would be adjusted during
training, M is binary adjacency matrix of G, BIC(G) is the
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BIC score of graph G and A(M) is the acyclicity constraint.
And if the fMRI data do not need to guarantee the acyclicity,
λ needs to be set always equal to 0.

III. EXPERIMENTS

In this section, to assess the performance of EC-DRL,
we conduct experiments on a public simulated fMRI dataset
generated from known ground-truth networks and then com-
pare the results with other state-of-the-art methods. Finally, to
demonstrate the application potential of EC-DRL, we apply it
to the real-world fMRI data.

A. Data Description

Simulation Dataset. To validate the effectiveness of our
proposed method, we use a widely used simulation datasets
to compare our method with other state-of-the-art meth-
ods. The dataset we use is the Netsim dataset [11] which
contains rich, realistic simulated fMRI data for a wide
range of underlying networks, experimental protocols and
problematic confounds in the data. The data is available
at https://www.fmrib.ox.ac.uk/datasets/netsim/index.html. And
TableI is the detailed information of the data we used in this
paper from the public dataset.

TABLE I: Description of simulated dataset

Sim Nodes Session(min) TR(s) Noise(%) HRF(s) Other factors

1 5 10 3.00 1.0 0.5
2 5 10 3.00 1.0 0.5 shared inputs
3 5 10 3.00 1.0 0.5 global mean confound
4 10 10 3.00 1.0 0.5
5 5 2.5 3.00 0.1 0.5
6 5 5 3.00 0.1 0.5

Real world fMRI Dataset. We also use the real-world
fMRI dataset to evaluate the performance of the proposed
method. We chose rhyming task fMRI data from the Sanchez
dataset. The rhyming task data is the fMRI data in which
nine subjects judged if a pair of visual stimuli rhymed or not.
The rhyming task data is available at https://github.com/cabal-
cmu/feedback-discovery.

B. Comparison Methods for Evaluation

In order to intuitively illustrate the competitiveness of our
EC-DRL, we compare with six other state-of-the-art or classic
methods. These methods include: Peter and Clark (PC) [12],
greedy equivalence search (GES) [1], Independent compo-
nent analysis based linear non-gaussian acyclic model (ICA-
LiNGAM) [2], continuous optimization for structure learning
(No Tears) [17] and reinforcement learning (RL) [18] methods.

We employ the existing implementations from the literature.
For ICA-LiNGAM, No Tears, and RL, the implementations
we used are from gCastle toolbox proposed by [15]. The code
is available at https://github.com/huawei-noah/trustworthyAI.
And for PC and GES, the implementations we used are from
the causal discovery toolbox [4]. All the hyperparameters are
using the default settings. And EC-DRL is using the same
hyperparameters as RL.

C. Results on Simulation fMRI Dataset

In the experiments, we choose 6 datasets from the Netsim
data and we run each method on each data. We present the
results in Table II. Note that when we test, we are using the
data of all the subjects concatenated. We compared the learned
results to ground-truth networks on the most common graph
metrics: structural Hamming distance (SHD), precision, recall,
and F1-measure (F1). An algorithm performs well when it gets
higher values of precision, recall, and F1 and a lower value
of SHD.

From Table II, we can find that GES and PC are not good as
other methods. Because they get a relatively high SHD and low
precision and recall. And No tears only perform better than
GES and PC. ICA-LiNGAM has a good and stable result but
is not as better as RL and EC-DRL. And it can be easy to find
out that EC-DRL performs better than RL. More than that, it is
worth noting that EC-DRL gets good results in all sims while
some other methods have extremely poor performance on a
few datasets which indicates EC-DRL has good robustness.

TABLE II: Netsim Simulation fMRI Dataset result

Sim Metrics PC GES ICA-LiNGAM No Tears RL EC-DRL

1

SHD 4 6 1 2 1 1
Precision 0.33 0.45 1 0.6 0.8 0.8

Recall 0.4 1.0 0.8 0.6 0.8 0.8
F1 0.36 0.63 0.89 0.6 0.89 0.89

2

SHD 11 10 2 1 1 1
Precision 0.31 0.29 0.75 1 0.8 0.8

Recall 1.0 0.8 0.6 0.8 0.8 0.8
F1 0.48 0.42 0.67 0.89 0.8 0.8

3

SHD 13 10 0 1 0 0
Precision 0.28 0.29 1.0 1.0 1.0 1.0

Recall 1.0 0.8 1.0 0.8 1.0 1.0
F1 0.43 0.42 1.0 0.89 1.0 1.0

4

SHD 5 6 1 7 6 1
Precision 0.73 0.69 1.0 0.45 0.54 1.0

Recall 0.92 0.92 0.80 0.42 0.5 0.92
F1 0.81 0.79 0.89 0.43 0.52 0.96

5

SHD 3 3 0 1 1 0
Precision 0.63 0.63 1.0 1.0 0.8 1.0

Recall 1.0 1.0 1.0 0.8 0.8 1.0
F1 0.77 0.77 1.0 0.89 0.8 1.0

6

SHD 3 3 1 1 2 0
Precision 0.63 0.63 1.0 0.8 0.6 1.0

Recall 1.0 1.0 1.0 0.8 0.6 1.0
F1 0.77 0.77 1.0 0.8 0.6 1.0

In summary, the proposed model EC-DRL performs better
than the five comparison methods on the simulation data.
However, EC-DRL has high precision, but the outputs have
a relatively small number of edges. The reward function can
be adjusted in future work to produce more edges. Next, We
discuss its performance on the real fMRI data in the following
section.

D. Results on Real fMRI Dataset.

In this section, we will use real-world data to test the
performance of EC-DRL. In detail, we run EC-DRL and other
methods on the fMRI data of all subjects separately. If 40%
of the generated graphs have a certain directed edge then
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(a) PC (b) GES (c) LiNGAM (d) No Tears (e) RL (f) EC-DRL

Fig. 1: The Brain effective connectivity network structure learned by 6 methods on rhyming task fMRI data.

we assume there is effective connectivity between the brain
regions.

The rhyming task fMRI data included an Input variable built
by convolving the rhyming task boxcar model with a canonical
hemodynamic response function. And that means the edges
from the Input variable must feedforward into the regions of
interest, and no edge should point backward into the Input
variable. Therefore, we can use the Input variable as a simple
but gold standard for the accuracy of the results of methods.
The results are shown in Fig1

From Fig1, we can easily find that there is an edge in the
results of PC and GES pointing from ROIs to the Input variable
(LOCC → I). And that means their result may not reliable
enough. ED-DRL discovers 2 edges that point out from the
Input variable. LiNGAM, No Tears and RL discovers 8, and
PC discovers 1. And from Fig1 we also can find that 4 of the
methods get the results of I → LIFG and I → LIPL, which
indicates it is very likely that these two edges exist. And And
some edges were discovered by all the methods i.e. ROCC →
LOCC, RACC → LACC. This phenomenon may represent
that the right hemisphere of brain regions always activated
earlier than the left hemisphere of brain regions under this
experiment.

In summary, the results on real-world data show that the
new method EC-DRL can provide a reliable perspective for
the analysis of effective connectivity in task data, and EC-DRL
may bring some inspiration to researchers.

IV. CONCLUSION

In this paper, we proposed a new model to estimate brain
effective connectivity networks from fMRI time series data
with the deep reinforcement learning technique, called EC-
DRL. EC-DRL uses Actor-Critic as the basic frame and
employs an encoder-decoder model as the actor to better
extract information from data. Experimental results on both
simulated and real-world data demonstrate the efficacy of our
proposed framework.
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