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Abstract—A clinically meaningful distance metric, which is
learned from measuring patient similarity, plays an important
role in clinical decision support applications. Several metric
learning approaches have been proposed to measure patient
similarity, but they are mostly designed for learning the metric
at only one time point/interval. It leads to a problem that
those approaches cannot reflect the similarity variations among
patients with the progression of diseases. In order to capture
similarity information from multiple future time points simulta-
neously, we formulate a multi-task metric learning approach to
identify patient similarity. However, it is challenging to directly
apply traditional multi-task metric learning methods to learn
such similarities due to the high dimensional, complex and noisy
nature of healthcare data. Besides, the disease labels often have
clinical relationships, which should not be treated as independent.
Unfortunately, traditional formulation of the loss function ignores
the degree of labels’ similarity. To tackle the aforementioned
challenges, we propose mtTSML, a multi-task triplet constrained
sparse metric learning method, to monitor the similarity pro-
gression of patient pairs. In the proposed model, the distance
for each task can be regarded as the combination of a common
part and a task-specific one in the transformed low-rank space.
We then perform sparse feature selection for each individual
task to select the most discriminative information. Moreover, we
use triplet constraints to guarantee the margin between similar
and less similar pairs according to the ordered information of
disease severity levels (i.e. labels). The experimental results on two
real-world healthcare datasets show that the proposed multi-task
metric learning method significantly outperforms the state-of-the-
art baselines, including both single-task and multi-task metric
learning methods.

Index Terms—Metric Learning; Patient Similarity; Multi-task
Learning; Sparse Regularization

I. INTRODUCTION

In healthcare domain, understanding a patient’s health status
and providing a reasonable treatment plan are important for
both doctors and patients. An effective and efficient way
for doctors is to find similar patients and refer to their
successful treatment plans. However, it is difficult to identify
similar patients from a large number of healthcare data even
according to rich experience of doctors. Thus, automatically
recognizing patients with similar symptoms and disease his-
tory is a challenging problem. To solve this challenge, we
need to learn a clinical meaningful metric which measures
the relative similarities between a pair of patients based on
their medical indicators. A proper similarity measure enables

various downstream clinical applications, such as personalized
medicine [1, 2], medical diagnoses [3], trajectory analysis [4]
and cohort study [5].

In fact, we can use some simple metrics such as Euclidean
distance to measure the similarity among patients. However,
the obtained distances cannot reflect the statistical regularities
specified by the supervised information from a desired task.
To address this issue, metric learning algorithms are proposed
and shown their superiority under various scenarios [6], such
as image recognition and document retrieval. In healthcare
domain, several studies are proposed to measure patient sim-
ilarity based on the metric learning methods [5, 7-12]. The
working process of these models includes two steps: (1) Trans-
forming samples in the original space to a new space, either
through a linear [7, 8, 10] or non-linear [5, 9, 11] operation,
and (2) calculating their distances in the new space based on
the label information. The label information can be binary
with control and disease cohorts [10], multiple independent
diseases [7, 9] or constructed from medical knowledge [11].

However, all the aforementioned methods are designed for
measuring patient similarity at only one time point/interval.
Actually, patients’ health condition is ever changing with
the progression of diseases. For example, in the study of
Alzheimer’s disease (AD), a patient with a current diagnosis
”mild cognitive impairment (MCI)” is considered to be similar
with the cohort of mild diseased patients, but s/he may gradu-
ally become more similar to the severely diseased group after
a few months, as the disease status changes. On the contrary,
the status of another MCI patient may remain stable for a long
time. Therefore, it is better to predict patient similarity on
multiple future time points (i.e. multi-task metric learning),
which can provide a more comprehensive study to enable
personalized healthcare compared with performing a one-time
prediction.

Existing work for multi-task metric learning [13—16] treats
the Mahalanobis matrix as the combination of a common part
and a task-specific one, which results in a convex optimization
problem. However, these approaches cannot be directly applied
to measure patient similarity due to the characteristics of
healthcare data. Healthcare data collected from real-world clin-
ical systems are usually high dimensional, sparse and noisy,
i.e., containing a lot of redundant and irrelevant information.



Incorporating these features directly may hide the discrim-
inative information, resulting in poor performance of exist-
ing multi-task metric learning models. Extracting informative
features manually by experts will cost huge expenses and
efforts. Therefore, a multi-task metric learning model should
be able to perform sparse feature selection to remove the effect
from redundant and irrelevant features and capture the most
relevant information for each individual task. Nevertheless,
it is not easy to explicitly perform sparse feature selection
for existing multi-task metric learning models. Moreover,
as the feature dimension increases, the dimensions of the
Mahalanobis matrix increase, which may cause the overfitting
issue.

Additionally, in the medical field, the label information
of different classes often has clinical relations. For example,
there are multiple stages of Alzheimer’s disease, indicating
the severity levels during the disease progression process.
The symptoms of “severe” stage should be more similar with
“moderate” than with the “mild” stage. In supervised metric
learning, a common way to obtain the similarity label of a
sample pair is to denote them as similar if they belong to the
same class, otherwise dissimilar. In this way, the similarity
degree among labels will be ignored, which may not provide
sufficient information to the learner. Therefore, the multi-
task metric learning approach should be able to provide the
similarity degree relationship, as well as the pairwise label
information.

To tackle all the aforementioned problems, in this paper,
we propose a multi-task Triplet constrained Sparse Metric
Learning method (mtTSML) to measure the progression of
patient similarity over time. The input data are the attributes
measured at the screening or baseline time, and each task is
to learn the distance metric at a future time point. To select
informative features from the high dimensional inputs, we
first decompose the common and task-specific Mahalanobis
matrix by low-rank transformation matrices. In this way, the
Mahalanobis distance can be formulated as the combination
of a common distance shared by all tasks and a task-specific
one. In the transformation matrix, each column can be re-
garded as a vector which measures the importance of the
corresponding features. We then perform feature selection on
the transformation matrix for each task, through introducing
the {5 1 [17] regularization terms, which sets a number of non-
informative feature columns to zero. To consider the similarity
degree among disease labels, we construct triplet constraints
by forcing a margin between similar pairs and less similar
pairs. The designed triplet constraints not only force patients
with the same disease labels to be similar and different labels
to be dissimilar, but also successfully models the ordered label
relationship.

Our main contributions can be summarized as follows:

e We propose a multi-task sparse metric learning method
based on triplet constraints to monitor patient similarity
progression over time, which is capable of learning
patient distances at multiple future time points of interest
simultaneously. The multi-task formulation improves the

generalization performance for both diagnosis and prog-
nosis tasks. With learned distance metrics, clinical studies
can be performed to monitor the trend of similarity
variations.

e We perform sparse feature selection during the multi-
task learning process, which removes non-discriminative
features from the high dimensional input space for each
individual task.

e We incorporate the similarity degree information by
considering the ordered relationship of disease labels in
formulating the distance constraints. In this way, severity
levels of the disease can be well reflected.

e Experimental results on two real healthcare datasets show
that our proposed method significantly outperforms state-
of-the-art single task learning and multi-task learning
methods.

II. METHODOLOGY

In this section, we first review a typical traditional frame-
work of multi-task metric learning, and then introduce the
proposed method.

A. Preliminary

Most metric learning methods [18-21] aim at finding the
Mahalanobis distance metric, due to its simplicity and flexi-
bility. The Mahalanobis distance can be seen as the Euclidean
distance after performing a linear transformation on the in-
put space. The Mahalanobis distance between two vectors
xi,x; € RP is defined as,

& (x; — x5) = (xi = x;) T M(x; = %;), (D
where M € RP*P is a positive semidefinite (PSD) matrix to
be learned, and D is the size of feature dimension. A popular
way to construct a multi-task metric learning model is by shar-
ing the composition of Mahalanobis matrices [13, 14, 22]. The
Mahalanobis matrix of each task is assumed to be composed of
a common part M shared by all the tasks and a task-specific
part M, preserving its specific properties. Thus, the distance
between two points defined by the metric of the ¢-th task is,

d7 (xi,%;) = (x; — x;) T (Mg + My)(x; — x5),  (2)

where My, M, € RP*P_ Intuitively, the metric defined by
M, picks up general trends across multiple data sets and M,
specializes the metric for each particular task. The objective
function is formulated as,

T
mirllvI LMo, M;) + voReg(My) + Z veReg(My), (3)
0ore 0T t=1

where L£(-) is the loss function, T" is the number of tasks,
Reg(-) is a regularization function, and vy, and -y, are the trade-
off parameters. £(-) can be contrastive loss or triplet loss, and
L-2 norm is usually used in Reg(-).
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Fig. 1: The training process of the proposed method on measuring patient similarity progression. We use the combination
of a common distance D, and task-specific ones Di, Do, ..., D to represent the desired distances, and then formulate the
constraint function based on the distances. Ry, Rs, ..., Ry are the sparse regularization terms.

B. The Proposed Multi-task Metric Learning Method

Healthcare data collected from real-world applications often
tend to be high dimensional, complex and noisy. Therefore, a
proper model on learning patient similarity should be able to
work on such kind of data. In this paper, we propose a multi-
task learning framework that learns the distance through a cou-
pled low-rank sparse transformation. Moreover, we consider
the similarity degree among patient groups using a distance
constrict based on triplet loss. The training process of the
proposed method can be seen in Fig. 1.

In Fig. 1, there are three groups of patients labeled as
1, 2 and 3. Taking a triplet of patients P;, P; and Pj for
example, the distances shown in the input space do not reflect
the label information. Through metric learning, we can obtain
their relative distances in a new space according to their labels.
As patients’ health conditions are ever changing, we monitor
the changes of their distances in several future time points
of interest. Learning patient similarity at each timestamp is
regarded as one task. As illustrated in Fig. 1, through multi-
task metric learning, the condition of the anchor patient P;
gradually changes. In the following subsections, we introduce
details of the proposed method.

1) Low-Rank Metric Formulation: The formulation in
Eq. (3) is often limited to low dimensional features, which
may not be suitable for real-world healthcare data. We seek a
low rank matrix L € R"*? with » < D by decomposing M
as M = LT L. With this decomposition, the PSD constraint of
M can be automatically satisfied. Although the optimization
problem becomes non-convex in terms of L, it is usually not an
issue, and very good results can be achieved [23-25]. Through
decomposing M and M, the distance function for task ¢ as
defined in Eq. (2) can be written as,

df (xi,%5) = (x; — x;) T (Lg Lo + L, Ly)(x; — x;)

4
= ||Lox; — Lox;||* + [|Lex; — Lix|%,

where Lo € R"*P is a global transformation matrix and L; €
R"*P is the task-specific one. The individual distance turns
out to be the combination of the common distance and a task-
specific one.

2) Sparse Feature Selection: The real-world healthcare data
may contain a lot of irrelevant and redundant information.
Blindly incorporating these information may hide the relation-
ship between labels and informative features. Therefore, it is
essential to select the most discriminative features during the
learning process.

We use sparse regularization for feature selection and
dimension reduction. Suppose 1; is the j-th column vector

of the transformation matrix L, ie., L = [lj,1s,...,1p],
and ||| = (3;_; L%)"/2 Then 1; can be regarded as a
measurement of the importance of the j-th feature. If ||1;|| = 0,

then the j-th feature in the transformed space becomes zero.
We expect that only a small amount of 1;s are non-zero, which
transforms the discriminative features to a low dimensional
representation. Therefore, the sparse regularization on L can
be written as,

D D r
ILll2a =Ll =>_ O 1)z (5)
j=1

j=1 i=1

This regularization term enforces some l;s to be zero
vectors, and the corresponding features will not be selected,
yielding feature sparsity.

3) Distance Constraint Construction: ~As mentioned in
Section I, there are multiple class labels to describe the status
of a disease, and there exists ordered relationship among labels
according to the severity levels [26]. We believe that incorpo-
rating such similarity degree information could help the model
to better capture the relative distance information. Recent work
on measuring patient similarity in [11] incorporates the fine-
grained label information by using a quadruplet which consists
of an anchor patient, a positive/negative patient and a partial



similar patient. However, this approach does not work in our
scenario, as one partial similarity label ignores the multiple
levels of severities.

We formulate triplet constraints to incorporate the similarity
degree among classes. We denote the instance set as X =
{x;}¥, and its associated label set C = {c;}}¥,, where x; €
RP, ¢; € R reflects the disease stage, and IV is the number of
patients. Considering a triplet of patients x;, x; and x;, from
X, the following sets of constraints can be constructed,

o R' = {(xi,xj,Xx), ¢ <cj<cg}. In this set, although
x; and x; belong to different classes, we can say that x; is
more similar to x; than xj, according to the ordered label
information that ¢; is closer to ¢; than to cy.

e R? = {(x4,Xj,Xg), ¢ > c¢; > ci}. Similarly, in this
set, x; should be more similar to x; than to xy.

o R3 = {(xi,x;,Xr), ¢ =c;# cx}. In this set, x; and
x; belong to the same class, while x; has a different class
label. Obviously, x; should be more similar to x; than to x.

The above sets pose distance constraints that describe the
relative relationships among the class labels. In the combined
set R = R'UR?URS3, the distance between x; and x; should
not be larger than that between x; and x, (i.e., d(x;,x;) <
d(x;,xy)). The distance constraints need to be satisfied during
the training process. Following the large margin principle, we
formulate the constraint as,

dZ(Xi,Xj) < d*(x;,x1) — g, (6)

where g > 0 is a margin parameter to ensure a sufficiently
large difference. This inequality constraint ensures that the
distance between an anchor sample and its similar sample
should be smaller than that between the less similar one
with some fixed margin. Therefore, metric learning needs to
optimize the following hinge loss,

> (P (xi %)) — d(xi,%k) + gl (7
(i,4,k)ER

where [-]; = max(-,0). If the constraint in Eq. (6) does hold,
the corresponding triplet makes no contribution to the loss
function. The large number of triplets by fully considering
the constraints in Eq. (6) will result in heavy computational
cost and slow convergence. In practice, we calculate local
constraints between each sample point and its neighborhood
instead of all the samples.

4) Learning Framework: Suppose there are T tasks, we
need to learn the shared transformation Ly, and the specific
transformations {Lj, Lo, ..., L} jointly for all the tasks. We
formulate the overall loss function as below,

T

min F =

{@(Lo,Lt)anth,l +rolLolZ, ()
Lo....,.Lyp

t=1
where L£.(-) = ﬁ >

) (i,j,k‘)GRt
d(x;,x;) is formulated in Eq. (4), R; is the set of triplets
for the ¢-th task, || - ||r is the Frobenius norm, and vy and

[d (x4, %;) — dF (xi,%k) + gl

v¢ are the trade-off parameters. On one hand, If 79 — oo,
then Ly approaches a zero matrix, which means that there
is no shared metric among tasks, i.e., Eq. (8) reduces to T’
independent models. On the other hand, if 74 — oo, the task-
specific transformations L; become irrelevant zero matrices,
and we learn a single metric Ly across all the tasks. In
Eq. (8), we use the Frobenius norm to penalize large value
of elements in common metric Ly, and make the transformed
space to be low dimensional by setting r < D. Then we
use the regularization term ||L;||21 to perform sparse feature
selection for each individual task. Since the /5 ; term is non-
differentiable, inspired by [7, 10], we apply the alternating
direction method of multipliers (ADMM) [27] to optimize the
loss function.

5) Optimization: We first transform Eq. (8) to the following
equivalent problem:

T

min F =

Lo, L w Lo|2
Lo.L,, W, [Ct( 0, Lit) +7e[[Well2,1 ]| + 70 LolF,

t=1
st. Li=W,, for t=1,2,...,T.

€))
Through introducing the Lagrange multipliers {Y; €

Rr*D }, the following function can be obtained,

T
Join F=> [ct(Lo,La + Yl Well3 1 + (Yo, Ly — W)

""" t=1

+EILe = Willk] + ol
(10)
where (A,B) is the inner product of matrices A and B,
and p is a nonnegative penalty hyper-parameter. We solve
Eq. (10) via an iterative procedure based on ADMM. In the
s-th iteration, the parameters Ly, L;, W, and U, are updated
as follows,

L8+1 — arnginﬁl(Lo) + rYOHLOH%'?
0
L§+1 s arngin »CQ(Lt) + g”Lt — Wf + U?H%’v
Wterl — argmin%HWtH%’l + g”LfH - W, + UZH%’

Uit e U (L - Wi,
1D
where U; = 1Y,. To update the matrices, we calculate the
partial derivatives of the distance function F with respect to
Lo and {L;}7_,. The gradient of Ly is,

OF

T

t=1 (i,j,k)ER

where X;; = (x; — x;)(x; — xj)T, and (3,1, is an indicator
that controls whether the distance constraint is satisfied or not,

- { 1, if df(xi,x;j) +1—d?(xi,x5) >0,
1) O’

otherwise. (13)



The gradient of L; can be calculated as,

oF
oL, Z Bk LiXij — LX) + p(Ly — Wy + Uy).
L Ggk)ER
(14)

Fixing L; and Uy, we use the proximal operator [28] to
update W, via an element-wise thresholding operation,

s s s Vt
(W“)i:(L“JrU)i[l— - .
R oY I + Uil ]

(15
Eq. (15) provides a closed form solution of W,. The
proposed method is summarized in Algorithm 1.

Algorithm 1 Multi-task Sparse Metric Learning

Input: Triplet samples Ry, Yo, Ve P> O Qi
Output: Transformation matrices Lo, {L;}7_;
1: Initialize Lo, {L¢}7q, {W 1, {U
2: repeat
33 fort=1:T do
4 update Lj according to Eq. (12);
5 update L, according to Eq. (14);
6: update W, according to Eq. (15);
7 update U, according to Eq. (11);
8: end for
9: until The stopping criterion is satisfied.

III. EXPERIMENTS

We conduct experiments on two real-word datasets, and
evaluate the performance of the proposed approach compared
with existing state-of-the-art metric learning methods. More-
over, we use case studies to further demonstrate the intuition
behind the proposed method.

A. Experimental Setup

1) Datasets: We use two healthcare datasets to validate the
proposed approach.

e Alzheimer’s Disease Neuroimaging Initiative (ADNI) ! is
a longitudinal project which aims to track the progression of
the disease using biomarkers and clinical measures. Following
the variables given in [29, 30], we extract 40 meta features,
and combine them with 323 MRI features. The diagnosis of
Alzheimer’s disease is recorded every few months over years.
There are three cohorts of patients: normal controls (NL),
mild cognitive impairment (MCI), and Alzheimer’s disease
(AD) patients. We use the features at the baseline visit to
study patient similarity at current and future time points, i.e.,
the relative distances among patients six months later, twelve
months later, and so on.

e The study of osteoporotic fracture (SOF) 2 is a comprehen-
sive study focused on bone diseases. It includes longitudinal
visit records about osteoporosis of elder Caucasian women
over 20 years. Potential risk factors and confounders belong

Uhttps://adni.loni.usc.edu/
Zhttps://sofonline.epi-ucsf.org/interface/

to several categories such as demographics, family history,
and lifestyle. We process the bone health status using the
bone mineral density (BMD) values by comparison with young
healthy references [31], resulting in three severity levels: nor-
mal, osteopenia and osteoporosis. Similarly, we use features
measured at the first visit to predict status of bone disease
progression in future visits.

Note that some diagnosis results are missing due to several
reasons, such as patient’s absence of visits and incomplete
recording. Therefore, the number of patients in different tasks
is not the same. Following [29], if there is no label for a patient
in certain tasks, we then remove the data of the patient when
training the corresponding tasks. Moreover, since the disease
status is ever changing, the diagnosis results of one patient
can be different over different visits. Data statistics are shown
in Table I, where each task corresponds to one future visit.

TABLE 1I: Statistics of the ADNI and SOF datasets.

# of samples

Dataset Taskl Task2 Task3 Task4  Task5 # of features
ADNI 732 693 615 425 105 364
SOF 539 544 542 230 540 200

2) Baseline Approaches: We compare our proposed multi-
task sparse metric learning model with state-of-the-art single-
task (ST) metric learning models and multi-task (MT) metric
learning models, respectively.

o Single-task Learning Methods. In this set of methods, each
task is trained separately, and there is no shared information
among tasks. Therefore, we obtain different metrics for differ-
ent tasks. LMNN [18] is a classical metric learning method,
which pulls the k-nearest neighbors belonging to the same
class closer, and separates examples from different classes by
a large margin. ITML [20] learns the Mahalanobis distance by
minimizing the differential relative entropy under the pairwise
constraints between two multivariate Gaussians. GMML [19]
formulates the learning process as an unconstrained smooth
and convex optimization problem. SCML [21] learns a sparse
combination of locally discriminative metrics, which regards
the Mahalanobis matrix as a nonnegative weighted sum of
multiple low-dimensional basis. LowRank [7] encodes a low-
rank structure for the Mahalanobis matrix of bilinear similarity
and performs sparse feature selection.

e Multi-task Learning Methods. This set of methods cap-
ture both shared and task-specific information. mtMLCS [24]
assumes that all the tasks share a common low-dimensional
subspace, and then exploits a task-specific projection. mt-
SCML [21] is a multi-task version of SCML, which uses €5 1
norm to perform group feature selection of the combination
matrix. mt-LMNN [13] extends LMNN and optimizes the
convex formulation on common Mahalanobis metric and task-
specific one. CP-mtML [25] decomposes different tasks into a
common projection and a task-specific projection, and learns
the metric by optimizing on the transformation matrix.

In our problem setting, the disease stages of some patients
may change during the monitored visits. Therefore, global



TABLE II: Performance comparison on the ADNI dataset in terms of MSE.

ADNI (20% as training data) ADNI (40% as training data)
Task]1 Task2 Task3 Task4 Task5 Avg Task]1 Task2 Task3 Task4 Task5 Avg
Euclidean | 0.3795 0.4938  0.6369 0.6912  0.8583 | 0.6119 || 0.3617 0.4828 0.5818 0.6367 0.6470 | 0.5420
Cosine 0.3654 0.5022 0.6508 0.6632 0.8052 | 0.5974 || 0.3443 04611 0.6017 0.6436  0.6134 | 0.5328
GMML 02392 03616 0.5858 0.4376  0.4121 | 04072 || 02503 04221 0.5112 0.5450  0.3998 | 0.4257
SCML 0.2096  0.3894 0.4481 0.5681 0.5147 | 0.4260 || 0.1995 0.3615 0.3864 04126 0.5217 | 0.3763
ST | LowRank | 0.1699 0.2636 0.3104 0.4003 0.7528 | 0.3794 || 0.2027 0.3302 0.3646 0.3895 0.2568 | 0.3088
ITML 0.1271  0.2227 0.3108  0.3481 0.3509 | 0.2719 || 0.1180 0.2290 0.2929 03615 0.3294 | 0.2662
LMNN 0.1818 0.3257 0.3673  0.4471 0.5246 | 0.3693 || 0.1333 0.3128 0.3797 04516 0.4037 | 0.3362
TSML* 0.0957 0.2057 0.2687 03274 0.4469 | 0.2689 || 0.1098 0.1892 0.2300 0.2830 0.3513 | 0.2327
mtSCML 0.2301  0.3053 0.3798  0.4981 0.5147 | 0.3850 (| 0.1913 0.2799 0.3117 0.3592  0.3478 | 0.2980
mtLMNN | 0.2137 0.2681 0.3270 0.3972  0.3425 | 0.3097 || 0.1470 0.2358 0.2935 0.3247 0.2560 | 0.2514
MT | CP-mtML | 0.1317 0.2075 0.3823  0.3637 0.3336 | 0.2838 || 0.1098 0.2092 0.2965 0.3656  0.3234 | 0.2609
mtMLCS 0.1777 ~ 0.2500 0.2800 03917  0.3734 | 0.2946 || 0.1355 0.2325 0.2379 03410 0.3237 | 0.2541
mtTSML* | 0.I0IT  0.2018  0.2367 0.2976  0.2536 | 0.2182 || 0.0962 0.1766 0.2170  0.2652  0.2093 | 0.1929
TABLE III: Performance comparison on the SOF dataset in terms of MSE.
SOF (20% as training data) SOF (40% as training data)
Task1 Task2 Task3 Task4 TaskS Avg Task1 Task2 Task3 Task4 TaskS Avg
Euclidean | 0.5951 0.6154 0.6409 0.8671  0.8031 | 0.7043 || 0.5417 0.5576  0.5207 0.6067  0.7256 | 0.5905
Cosine 05552 0.5262 0.5666 0.8392  0.7600 | 0.6494 || 0.5691 0.5664 0.5786  0.5926  0.7392 | 0.6092
GMML 0.4417 04369 0.4737 04685 0.5138 | 0.4669 || 0.4398 0.4424 04332 05730 0.5023 | 0.4782
SCML 0.3558 0.4185 0.3560 0.5315 0.4677 | 0.4259 || 0.3333 0.3410 0.3628 0.6279  0.5000 | 0.4330
ST | LowRank | 0.4847 0.4954 0.4892 0.5455 0.5846 | 0.5199 || 0.4352 04286 04240 0.6629 05116 | 0.4925
ITML 0.4417 04185 0.5232  0.4825 0.5446 | 0.4821 0.4306 0.4147 04747 05281 0.6279 | 0.4952
LMNN 0.3834 04369 04582 0.6503 0.7108 | 0.5279 || 0.3796 0.3318 0.3963 0.5506 0.4884 | 0.4293
TSML 03282  0.3631 0.4180 04615 0.4462 | 0.4034 || 03287 0.3180 0.3410 0.3708 0.4558 | 0.3629
mtSCML | 0.3037 0.3846  0.3467 0.5245 0.4185 | 0.3944 || 0.2824 0.3226  0.3721 0.5814  0.4393 | 0.3995
mtLMNN | 0.3804 0.3938 0.4334 0.5245 0.5108 | 0.4486 || 0.3426 0.3410 0.4055 0.4270 0.4698 | 0.3972
MT | CP-mtML | 0.3589 03538 0.3994 0.4895 04554 | 0.4114 || 0.3056 0.3456 0.3548 0.4270 0.4465 | 0.3759
mtMLCS 0.3776  0.4055 0.4022 0.4814 0.5196 | 0.4372 || 0.3102 0.3088 0.3502 0.3933 0.4651 | 0.3655
mtTSML 0.3067 0.3415 0.3407 0.3497 0.4062 | 0.3490 || 0.2824 0.2811 03410 0.3820 0.4279 | 0.3429

setting where all the tasks only share the common projection
without the task-specific parts is not applicable here.

3) Proposed Approaches: mtTSML is our proposed multi-
task metric learning method with sparse feature selection
and triplet constraints. Through removing the impact from
the common part, we can obtain the corresponding single-
task method TSML. TSML shares some similarities with
LowRank [7], as they both utilize f3; norm to perform
sparse feature selection. However, LowRank learns the bilinear
similarity by optimizing the logistic loss for binary classifica-
tion, whereas TSML learns the Mahalanobis distance using
the hinge loss on triplet constraints. Moreover, LowRank is
not designed to incorporate the fine-grained similarity degree
information.

4) Implementation Details & Measurement: KNN classifier
is adopted to evaluate the performance on disease diagnosis
and prognosis. Since the class labels are ordinal, we use mean
squared error (MSE) to measure the classification results. The
smaller the MSE values, the better the results. For example,
if the true label is “0”, predicting it to be “1” can be regarded
relatively better than predicting it to be “2”. We set kK = 3 in
KNN for the comparison of all the metric learning methods.
In the following experiments, the MSE results are averaged
over 5 random trials, i.e., we randomly split the dataset and
conduct experiments five times. For all the tasks, the training,
validation and testing data have no overlapped patient samples.

B. Experimental Results

1) Disease Prediction Results: Table II shows the experi-
mental results on the ADNI dataset. Table III shows the exper-
imental results on the SOF dataset. We conduct experiments
using 20% and 40% portions of the whole dataset as the
training data, respectively.

In the tables, we list the MSE results obtained from a KNN
classifier for all the tasks and the averaged results. Since in
our multi-task learning setting, all the tasks in one dataset
are optimized simultaneously, and there is no main/auxiliary
task, we care more about the averaged MSE than that of a
specific task. The averaged measurement reflects the general
performance during the disease progression process.

From the comparison with Euclidean and cosine distance,
we can see that the supervised metric learning methods can
better capture the statistical regularity from the original data.
Among the single-task learning methods, TSML achieves the
best results, as it can better capture the characteristics from the
dataset. The triplet-based distance constraints provide more
similarity information about the progression stages of the
disease, while other methods ignore the label relationships.
The low-rank formulation with sparse feature selection ensures
that the transformed space is low dimensional, and also
reduces the noisy information existing in the high dimensional
inputs. However, since different metrics are learned separately,
the relationships among tasks are totally ignored, resulting in
the overfitting issue. Therefore, single-task learning methods
cannot obtain good performance for each of the tasks.
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Fig. 2: Patient retrieval results using different metrics on ADNI and SOF datasets using 20% as training data. X-axis is the
number of retrieved patients, and Y-axis is the average precision of each method.

As shown in Table II and Table III, the overall performance
of multi-task learning methods is better than that of single-task
learning methods. Specially, the multi-task methods signifi-
cantly improve the results compared to their corresponding
single-task versions (e.g. mt-SCML vs. SCML, mt-LMNN
vs. LMNN, and mtTSML vs. TSML). Multi-task learning
captures the information from multiple tasks simultaneously,
and transfers useful information among different tasks. The
shared information benefits each individual task, especially
the weakly trained tasks. On the ADNI dataset, for example,
Task 5 has limited number of training samples due to missing
labels. We can see that the single-task learning methods
cannot perform well using such small amount of training
data samples. However, the multi-task learning methods can
significantly improve the classification accuracy. This owes to
the fact that multi-task learning transfers shared information
which helps for training Task 5. Similar observations can also
be found in Task 4 on the SOF dataset.

Among the multi-task metric learning methods, the pro-
posed method mtTSML achieves the best results. mtLMNN
simultaneously optimizes the common Mahalanobis matrix
and task-specific one as described in Section II-A. However, it
cannot reduce the rank of the Mahalanobis matrix. CP-mtML
and mt-MLCS are the two methods that try to transform the
original data into a low-dimensional space, and hence they
have some capability of handling data with high dimensions.
mtMLCS transforms all the tasks to a common subspace by
sharing a common projection matrix, but it may underestimate
the heterogeneous information of different tasks. CP-mtML
has both common projection and task-specific ones, without
feature selection and the distance constraints for similarity
degree of the labels. mtSCML regards the Mahalanobis matrix
as a weighted sum of several rank-1 matrices and is computa-
tionally efficient. However, the matrices cannot be optimized
jointly with the combination weights, which may reduce the
generalization ability of the model.

Results obtained using 40% data as training are generally
better than those of using 20%. As the training size increases,
the models are able to capture more statistical information.
However, it is usually hard to obtain sufficient amount of

healthcare samples with labels in practice. Therefore, the
ability of learning from small amount of data samples is
important. In Table III, the MSE values of each method are
higher than those in Table II. This is due to the fact that the
features on the SOF dataset are very noisy and not informative
enough. The features on the SOF dataset are mostly risk
factors which implicitly affect the disease, while those on
the ADNI dataset are mostly biomarkers. Nevertheless, the
proposed method mtTSML achieves the best performance.

2) Patient Retrieval: Identifying similar patients is an im-
portant practice in the healthcare domain. We perform the task
using metric learning to retrieve patients with similar health
conditions. Given a query from the testing pool at some future
time point, we retrieve the top & most similar patients from
the training set. Then we compare the disease status labels of
retrieved samples at the time point with the testing patient, and
obtain the precision which is the percentage of the correctly
retrieved patients among k patients. We repeat the query
process for all the tasks and calculate the average precision.
Note that in the query, we only compare whether the retrieved
patients have the same label as the testing patient, without
considering the ordered label relationships in the measurement.

Fig. 2 illustrates the comparison of different methods on
precision@k trained using 20% data on these two datasets.
We can see that the proposed method mtTSML outperforms all
the other baselines on both datasets. Also, multi-task learning
methods perform generally better than single-task learning
methods.

C. Experimental Analysis

1) Convergence: We empirically show that our method
converges to a sub-optimal solution. Fig. 3(a) and Fig 3(b)
show the variation of objective function values with respect to
the number of iterations on the two datasets, respectively. We
conduct the experiments five times (i.e., trial 1, trial 2, etc).
At each time, there are 20% patients randomly selected as the
training data. From the two figures, we can see that for both of
the two datasets, the values of the objective function gradually
converge with the increase of the number of iterations.

2) Reduced Model Comparison: To validate the importance
of sparse feature selection and proposed triplet constraints,
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Fig. 4: Comparison of MSE of mtTSML-s, mtTSML-t and
mtTSML on ADNI and SOF datasets. The smaller the MSE
values, the better the results.

we conduct experiments with two reduced models separately.
We remove the sparse regularization term ||L;||2,; in Eq. (8),
and denote the reduced method as mtTSML-s. We remove
R! and R? sets and keep only the R> set when constructing
distance constraints (see Section 1I-B3) for Eq. (8), and denote
the reduced method as mtTSML-t. The MSE results on two
datasets (20% as training data) are shown in Fig. 4. From the
two figures, we can see that the proposed mtTSML performs
better than the reduced versions mtTSML-s and mtTSML-
t. This demonstrates the effectiveness of considering feature
sparsity for parameter regularization, and the relative similarity
of labels (reflected in R! and R?) for distance constraints.

3) Sparse Feature Selection: To indicate that the proposed
method mtTSML is able to select informative features from
the high dimensional feature space for each individual task, we
use color map to illustrate the learned transformation matrix
L,. We append 100 dimension Gaussian noises on the SOF
dataset to expand its feature dimension to 300. The model is
trained using 20% portion of the data.

Fig. 5 shows the color map of the transformation matrix
L; from Task 1 to Task 5, respectively, on the SOF dataset
with noise. The horizontal axis is the feature dimension,
and the vertical axis is the dimension of transformed space.
We can see that the last 100 columns which correspond to
the noisy features are set to zero vectors by the model. At
the same time, a number of columns have zero values for
original features, which indicates that the original dataset itself
is noisy and contains many redundant features. Among the
selected informative features, the left columns are assigned
large weights in all the matrices. In fact, these features are the
dual x-ray absorptiometry measurement values at the baseline
visit, which are clinically important for bone disease diagnosis.

4) Disease Progression Visualization: Multi-task metric
learning provides us a way to analyze and visualize patient
disease progression. Fig. 6 shows the neighbor distributions
of a given sample patient over time. In each timestamp, we
use the nearest 15 neighbor patients. Multidimensional Scaling
(MDS) [32] is used to visualize the relative distances. We can
see that in the first month, the anchor patient is surrounded
by neighbors with MCI. Twelve months later, although the
patient is still correctly predicted as MCI by KNN, more
impostors labeled AD become nearer to him/her, indicating
the risk of disease deterioration. In the 24th month, the patient
becomes more similar to AD patients and diagnosed as AD,
which means that his/her disease stage becomes worse. As
the Alzheimer’s disease is neurodegenerative, the patients are
more and more close to ADs later on.

On the contrary, Fig. 7 illustrates the surroundings of
another patient diagnosed as MCI. From its neighbors, we
can see that the situation of this patient is better than the
first one, as there are normal patients in his/her top-15 nearest
neighbors. As expected, the status of this MCI patient remains
stable later on.

IV. RELATED WORK
A. Patient Similarity Learning

Measuring and identifying similar patients is a crucial com-
ponent for clinical decision support. LSML proposed in [8] is a
locally supervised metric learning method which incorporates
the physician feedback as the supervision. Zhang et al. [1]
propose a label propagation method to learn patient similarity
and drug similarity jointly. Wang et al. [33] propose a weakly
supervised patient similarity learning by using small amount
of labels. Sun et al. [34] use both statistical and wavelet
based features to capture the characteristics of patients. Zhan
et al. [7] learns the bilinear similarity while perform feature
selection. Considering the longitudinal records, [9] uses con-
volution neural network and [5] uses modified recurrent neural
network to learn nonlinear representation for the original
inputs.

B. Disease Progression Modeling

Monitoring the progression stages of a specific disease helps
to promote disease control and prevention. Models based on
probabilistic models [35] and neural networks [36-39] are
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Fig. 6: Visualization of disease progression for one patient on
the ADNI dataset. The red circle highlights the given anchor
patient. Green dots indicate samples labeled as “MCI”, and
blue dots are samples labeled as “AD”. M00, M12, M24 and
M36 denote the baseline time, 12 month, 24 month and 36
month after baseline time respectively.

proposed to detect the occurrence of disease or the risk of
potential disease. To monitor the disease stages over time,
models of multi-task formulations are developed. [29, 30, 40]
employ multi-task learning on regression model with fused
group lasso to predict cognitive scores in future timestamps for
Alzheimer’s disease and Parkinson’s disease, respectively. [41,
42] develop multi-task survival models to predict the sur-
vival/transition time. The above work has a similar problem
setting as our work: features measured at the baseline time
are used as the input, and each task is performed at one future
time point.

The above multi-task methods provide a way to explicitly
predict the values of cognitive score or disease transition
status. Differently, we focus on learning the variation of patient

(a) Task 1: MOO (b) Task 4: M36

Fig. 7: Visualization of disease progression for one patient on
the ADNI dataset. The red circle highlights the given anchor
patient. Green dots indicate samples labeled as “MCI”, and
yellow dots are samples labeled as “NL”.

similarity over time through multi-task metric learning. Be-
sides performing the classification task on predicting disease
labels of patients, metric learning can also be used to retrieve
similar patients and visualize patient cohort distributions.

V. CONCLUSION

In this paper, we proposed a multi-task metric learning
method to measure patient similarity at multiple future time
points of interest on two real-world healthcare datasets. Specif-
ically, we aim to resolve two challenges caused by the unique-
ness of healthcare data when performing metric learning: (1)
the high-dimension and noisy nature of the data collected from
real world systems, and (2) the clinical relationships among
disease labels. To remove the noisy information, feature selec-
tion is exploited in the proposed model. We first decompose
the Mahalanobis distance for each task to a common and task-
specific part through low-rank transformation matrices, and
then perform sparse feature selection using ¢ ; norm for each
task. In such a way, non-informative features can be set to
zero while discriminative features can be selected for each
task. Triplet constraints are further designed to incorporate the
information of class labels. The constraints force the patients
with similar labels to get closer and less similar patients
to move far away by a fixed margin. Finally, experimental



results on two real world healthcare datasets demonstrate the
effectiveness of the proposed model.
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