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Abstract—Treatment effect estimation refers to the estima-
tion of causal effects, which benefits decision-making process
across various domains, but it is a challenging problem in real
practice. The estimation of causal effects from observational
data at the individual level faces two major challenges, i.e.,
treatment selection bias and missing counterfactuals. Existing
methods tackle the selection bias problem by learning a balanced
representation and infer the missing counterfactuals based on the
learned representation. However, most existing methods learn the
representation in a global manner and ignore the local similarity
information, which is essential for an accurate estimation of
causal effects. Motivated by the above observations, we propose a
novel representation learning method, which adaptively extracts
fine-grained similarity information from the original feature
space and minimizes the distance between different treatment
groups as well as the similarity loss during the representation
learning procedure. Experiments on three public datasets demon-
strate that the proposed method achieves the best performance
in causal effect estimation among all the compared methods and
is robust to the treatment selection bias.

Keywords-treatment effect estimation; similarity preserving;
representation learning

I. INTRODUCTION

Causal effect estimation is an essential task across many

domains, such as business [1], [2], sociology science [3],

bioinformatics [4], and healthcare [5]. It provides a powerful

tool to support decision-making. For example, in the healthcare

domain, treatment effect estimation can answer questions like

“If a diabetics patient had used another oral antidiabetic

medicine, would she/he be better?” to provide better therapies.

In the social domain, it can answer questions like “if she/he

had participated in the job training, would she/he get a job?”

to help people to have a better career. In these questions, the

first clause describes the treatment, and the second describes

the counterfactual outcomes. Treatment effect estimation can

answer all the above questions by estimating the causal effects

that measure the expected differences between the outcomes

of different treatments (i.e., settings or interventions).

In the Big Data era, a huge amount of data are accumulated,

which can be used to conduct treatment effect estimation.

For most of the data, treatment assignment is not explicitly

controlled, and such data are known as the observational

data [6]. Due to its easy access and low cost, the estimation

of causal effects from the observational data at either the

population-level or individual-level has been widely adopted

[2], [7], [8]. However, there are two challenges in practice

when estimating the causal effect at the individual level:

missing counterfactuals and treatment selection bias.

The missing counterfactual challenge comes from the fact

that an individual can only accept one treatment, so the

outcomes of other treatments (i.e., counterfactual outcomes)

are always unknown [9]. However, treatment effect estima-

tion requires comparing the outcomes of an individual under

different treatments. A possible solution is to infer missing

counterfactuals from the observations of other individuals, and

the underlying principle is that similar individuals with the

same treatment should have similar outcomes.

The second challenge, treatment selection bias, is brought

by the fact that individuals have their own preferences for

treatment selection. Such selection bias increases the difficulty

of the aforementioned counterfactual inference: We need to

estimate an individual’s counterfactual from another group

in which people usually have preferences different from the

preference of this particular individual.

To tackle the above two challenges, existing methods [10]–

[12] project individuals into a balanced representation space,

where different treatment groups are close to each other, and

then an outcome prediction model is trained to estimate the

counterfactuals. Most of these methods balance the distribu-

tions of different groups from a global view and ignore the

local similarity information, and thus the relative similarity

information between units might be omitted when learning

the representation. In [12], the similarity preserved individual

treatment effect estimation (SITE) method is proposed to retain

the similarity information when learning the latent representa-

tion. However, SITE only considers the similarity of extreme

cases (i.e., the coarse-grained similarity information), and the

causal effect estimation based on such cases may not have

enough improvement. Meanwhile, SITE also requires that the

underlying data are spherically distributed when calculating

the group distance, which might be unrealistic in the high

dimensional data.

Motivated by the above observations, we propose

an Adaptively similarity-preserved representation learning

method for Causal Effect estimation (ACE). Through the deep
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representation network, ACE maps the individuals from the

original space to the representation space. Then, the outcomes

are estimated based on the learned representations. The most

important component of ACE is the Balancing & Adaptive-

Similarity preserving (BAS) regularization applied on the

representation space. BAS regularization not only balances

the control/treated group but also adaptively preserves the

important similarity information from the original space. For

units located in the regions where most of the units are from

the same treatment group, it is important to preserve the

similarity information when learning the new representation;

while for the units in the mixture region of different treatment

groups, the preserving strength of pairwise similarity can be

made weaker when they are mapped to the representation

space. In general, the representation learnt by the proposed

ACE method has more overlapping between control/treated

group and preserves the fine-grained similarity information,

and corresponding the causal effect estimation can be greatly

improved. Experiments on three public datasets demonstrate

the effectiveness of our method.

II. METHODOLOGY

A. Preliminary

Let X denote all the feature variables and let Wi denote

the binary treatment assignment on unit i, i.e., Wi = 0
or 1. The unit i is in the treated group if Wi = 1, and

belongs to the control group if Wi = 0. Before the treatment

assignment, any outcome Y
(i)
1 (treated) or Y

(i)
0 (control), is

a potential outcome. After the intervention, the outcome Y
(i)
Wi

is the observed outcome or factual outcome, and the other

treatment’s outcome is the counterfactual outcome.

Treatment effect can be estimated at either the population-

level or individual-level. We mainly focus on the Individual

treatment effect (ITE) estimation in this paper. The ITE for

unit i is defined as1: ITEi = Y
(i)
1 − Y

(i)
0 , where Y

(i)
1 and

Y
(i)
0 are treated and control outcome of i-th unit.

The success of the potential outcome framework is based

on the four assumptions [5], [13]: Stable Unit Treatment
Value Assumption (SUTVA), Consistency, Ignorability and

Positivity [14]. These assumptions ensure the identification of

the ITE.

B. Overview

When estimating the individual treatment effect, Shalit et.

al. [11] and Ahmed et. al. [9] prove that the bound of ITE

estimation error comprises two parts: the divergence between

the control/treated group and the outcome prediction loss. In

the light of the theoretical results, our proposed ACE method

imposes the BAS regularization to decrease the discrepancy

of control/treated group and reduce the outcome prediction

error by adaptively preserving the similarity information when

learning the representation. Fig. 1 shows the framework

of SCE, which contains two procedures: (1) Representation

learning procedure which learns the balanced and similarity

1In some literature, ITE is also known as conditional average treatment
(CATE), which is defined as CATE = E[Y1 − Y0|X = x].

Fig. 1: Framework of ACE. The covariate X is fed into

the representation network to get the latent representation R.

Meanwhile, the propensity score fprop(X) is calculated and

then fed into the Balancing & Adaptive-Similarity preserving

(BAS) regularization denoted as gBAS(∗). After the represen-

tation learning procedure, two potential outcomes Ŷ0 and Ŷ1

are finally obtained through the outcome prediction procedure.

preserved representation; (2) Outcome prediction procedure

which estimates all the potential outcomes using the learned

representations. The following sections introduce the two

procedures in detail.

C. Representation Learning Procedure
In the representation learning procedure, ACE first learns

the representation via the standard feed-forward neural net-

work: R = frep(X; Θrep), where R is the latent represen-

tation, and frep denotes the neural network with Θrep as its

parameters. To decrease the ITE estimation error, the BAS

regularization is applied to the representation layer. The details

of BAS regularization are illustrated in the following section.
1) BAS Regularization Overview: As mentioned previously,

existing similarity preserved work might be inadequate to

capture the control/treated group discrepancy and preserve the

important similarity information as much as possible, when

only taking the selected triplets into consideration. To address

this issue, ACE utilizes a new strategy, called Balancing &

Adaptive-similarity preserving regularization (BAS) regular-

ization, which can overcome the shortcomings of the existing

work. The BAS regularization contains two components: (1)

Distribution distance minimization. (2) Adaptive pairwise sim-

ilarity preserving when mapping units from the original space

to the representation space. The next two sections will describe

the two components precisely.
2) Group Distance Minimization: In the representation

space, the distance between different treatment groups should

be minimized. Similar to the metrics used in [11], we adopt

the integral probability metric (IPM) [15], [16] to measure

the distances between different treatment groups. Then, the

distribution distance minimization term Ld is defined as:

Ld = IPM(RIc ,RIt), (1)

where Ic = {i : Wi = 0} and It = {i : Wi = t} are the index

set of control and treated group; RIc and RIt are the represen-
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Fig. 2: A 2-D example of adaptive similarity preserving.

tations of treated and control groups, respectively. The adopted

distance metric is capable to measure the control/treated group

discrepancy more precisely.

3) Adaptive Similarity Preserving: Local similarity infor-

mation is essential for counterfactual inference, as similar units

tend to have similar outcomes. In contrast to existing similarity

preserved ITE estimation method, we propose a novel strategy

that preserves the fine-grained similarity which adjusts the

strength of the pairwise similarity preservation according to

the data distributions. Therefore, we call it adaptive similarity
preserving.

Similarity Preserving Strength. Usually the treated and

control groups are distributed in the same covariate space

with partial overlap. In the intermediate region with sufficient

overlap, both the control and treated units are relatively

dense, which means a certain level of similarity change would

not affect the counterfactual inference. Thus, the similarity

preserving strength can be made weaker. While, for the regions

where the treated and control units are incredibly unbalanced,

the local similarity relationship will be changed dramatically

in the representation space after distribution distance min-

imization, which further incurs an unreliable estimation of

the counterfactual outcome. Therefore, preserving the local

similarity information in these regions will be critical. A 2-

D toy example is shown in Fig. 2 to illustrate the effect

of above adaptive similarity preserving. The details of the

adaptive similarity preserving are explained as follows.

Similarity Preserving Loss. Motivated by the dimensional-

ity reduction methods, stochastic neighbor embedding (SNE)

and t-SNE [17], we measure the similarity loss by K-L

divergence during representation learning. By minimizing the

K-L divergence, the similarity information extracted from the

original covariate space is preserved as much as possible in

the representation space. The proposed similarity preserving

regularization is formulated as:

Ls(P,Q) = −
∑

i,j

Pi,j log
Qi,j

Pi,j
, (2)

where P denotes the joint probability of xi and xj :Pi,j =
exp(S(xi,xj))∑

k �=l exp(S(xk,xl))
with S(·, ·) being the similarity function;

And Q denotes the joint probability of Ri and Rj , which is

calculated as: Qi,j =
exp(−‖Ri−Rj‖2)

∑
k �=l exp(−‖Rk−Rl‖2) .

Similarity Score Function. The most important part in

calculating the similarity preserving loss is the similarity

score function S(·, ·), which reflects the similarity preserving

strength in the original covariate space. Motivated by [12], the

definition of S(·, ·) is:

S(xi,xj) = 0.75| fprop(xi)+fprop(xj)
2 − 0.5|

−0.5|fprop(xi)− fprop(xj)|+ 0.5,
(3)

where fprop(·) is the pre-trained propensity score function.

The similarity function calculation is based on the propensity

score. The propensity score is the probability that the unit

is treated conditioned on the covariates [18]. Based on the

propensity score, our similarity function measures the similar-

ity in two aspects: (1) The first term measures the similarity
preserving strength, which is the deviation of the paired units

to the intermediate region. The larger the deviation is, the

larger the preserving strength is, and the higher the similarity

score is; (2) The second term measures the relative distance
within the pair, which can be viewed as the original similarity.

The larger the relative distance is, the smaller the similarity

score. By considering both the deviation as well as the relative

distance, the similarity function S(·, ·) integrates the original

similarity and the similarity preserving strength together.
4) BAS Regularization Summary: The BAS regularization

is formulated as:

gBAS(fprop(X),R,W) = αLd + γLs, (4)

where Ld and Ls are defined in Eqn. (1) and Eqn. (2), respec-

tively. Overall, the BAS regularization enjoys the following

benefits: (1) With the help of integral probability metric,

the control/treated group discrepancy can be better measured;

(2) BAS explores all the pairwise similarity and adaptively

preserves the important similarity information.

D. Outcome Prediction Procedure
Based on the learned representation, the outcome prediction

procedure infers the two potential outcome. As suggested

by [9], it is better to use separate model to infer control/treated

outcomes: Ŷ0 = fc(R; Θc), Ŷ1 = ft(R; Θt), where fc and

ft are the neural networks, parameterized by Θc and Θt

respectively, to predict the control and treated outcome.
In all, the factual outcome prediction loss can be calculated

as:

Lf =
∑

i∈Ic
biL(Y

(i)
F , fc(Ri; Θc)) +

∑

i∈It
biL(Y

(i)
F , ft(Ri; Θt)),

(5)

where Ic (It) is the index set of all control (treated) units;

L(·, ·) denotes the loss measure function. For continuous

outcomes, the square loss is adopted, and for categorical out-

comes, the cross entropy loss is adopted. bi is the re-weighting

term and bi =
N

2
∑N

j=1 Wj
Wi +

N
2(N−∑N

j=1 Wj)
(1 −Wi). Note

that in the observational dataset, the size of the control group

is usually much larger than that of the treated group, so re-

weighting each unit in the factual loss is needed.

E. Objective Function
Combining BAS regularization and the factual loss in esti-

mating the observed outcomes, Eqn. (6) gives us the final loss

function.

L = Lf+αLd+γLs+λ(||Θ−bias
rep ||2+||Θ−bias

c ||2+||Θ−bias
t ||2),

(6)
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where Lf is the factual loss shown in Eqn. (5). Ld and Ls

forms the BAS regularization, and are the same as Eqn. (1)

and Eqn. (2) respectively. The last term is the parameter

regularization, and Θ−bias
∗ denotes the parameters excluding

the bias term. α, γ and λ are three trade-off parameters.

By minimizing the total loss L, the proposed model esti-

mates two potential outcomes as well as the counterfactual

outcomes upon the representation space, where the distribu-

tions of different groups are adaptively balanced.

Optimization. The networks frep(·), fc(·) and ft(·) are all

feed-forward neural networks with ELU [19] as the activation

function. We adopt the Adam optimizer [20] to optimize the

objective function.

III. EXPERIMENT

A. Experimental Setting

1) Dataset: The datasets we adopt are the same as [12],

which are three public datasets IHDP, Jobs, and Twins. On

IHDP and Twins datasets, we average over 10 realizations

with 61/27/10 ratio of train/validation/test splits. And on Jobs

dataset, because of the extremely low treated/control ratio, we

conduct the experiment on 10 train/validation/test splits with

56/24/20 split ratio, as suggested in [11].

2) Performance Metric: On IHDP and Twins dataset, the

expected Precision in Estimation of Heterogeneous Effect

(PEHE) [21] is adopted. The lower the EPEHE is, the better

the method is. On Jobs dataset, only the observed outcomes

are available and the ground truth of ITE is unavailable. We

adopt the policy risk [11] to measure the expected loss when

taking the treatment as the ITE estimator suggests. Policy risk

reflects how good the ITE estimation can guide the decision.

The lower the policy risk is, the better the ITE estimation

model can support the decision making.

3) Baselines: We compare the proposed method with the

following three groups of baselines: Regression based meth-

ods: Least square Regression with the treatment as feature

(OLS/LR1), separate linear regressors for each treatment

group (OLS/LR2); Nearest neighbor matching based methods:

Hilbert-Schmidt Independence Criterion based Nearest Neigh-

bor Matching (HSIC-NNM) [22], Propensity score match

with logistic regression (PSM) [18], k-nearest neighbor (k-
NN) [23]; Tree based method: Causal Forest (C. Forest) [24];

Representation learning based methods: Balancing neural net-

work (BNN) [10], counterfactual regression with MMD metric

(CFR-MMD) [11], counterfactual regression with Wasserstein

metric (CFR-WASS) [11], Treatment-Agnostic Representation

Network (TARNet) [11] and Similarity Preserved Individual

Treatment Effect Estimation(SITE) [12].

B. Result Analysis

1) Performance Comparison: The performance of ACE and

baselines are summarized in Table I. The proposed method

achieves the best results on both IHDP and Twins datasets.

On Jobs dataset, ACE has the best performance in the out-of-

sample case, and achieves similar result with the best baseline

CFR-MMD in the within-sample case. The results demonstrate

that jointly minimizing the group distance and preserving

the fine-grained pairwise similarity information during the

representation learning can benefit ITE estimation.
Among the representation learning based models, CFR-

MMD, CFR-WASS, and SITE are competitive baselines. CFR-

MMD and CFR-WASS are similar in that they both min-

imize the distribution distance in the representation space,

and train separate outcome prediction models for different

treatments. Different from CFR-WASS and CFR-MMD, ad-

ditionally, SITE preserves the similarity information among

the selected triplet pairs in each mini batch. As similarity

information is helpful for outcome inference, in most of the

cases, SITE performs better than CFR-MMD and CFR-WASS.

In comparison with SITE, our proposed ACE method has the

superior result, because ACE utilizes the BAS regularization

to calculate the group discrepancy more accurately and fully

retain the fine-grained important similarity information when

learning the representations. Specially, on IHDP dataset, ACE

performs 23.5% and 17.5% better than the best baseline SITE

in within-sample and out-of-sample case, respectively.
2) The Effect of BAS Regularization Components.: BAS

regularization contains two components: distance minimiza-

tion and adaptive similarity preservation. To analyze the effect

of these two parts, we compare ACE with its two variants:

ACE without distance minimization component (ACE w/o B)

and ACE without similarity preservation component (ACE w/o

S). Fig. 3 shows the performance of ACE and its variants on

the three datasets. It is observed from the figure that, except

the within-sample case of Jobs dataset, ACE performs much

better than its variants in most of the cases. Overall, when

propensity score is relative accurate, BAS regularization can

greatly enhance the ITE estimation.

C. Experiment on Treatment Selection Bias
In the problem of estimating causal effect from observa-

tional data, selection bias is one major challenge. To validate

the performance of ACE under different levels of selection

bias, we conduct the following experiments on IHDP and

Twins datasets.
1) Treatment Selection Bias Creation: Depending on the

way to vary selection bias, we have the following two cases:
Case 1: the selection bias is varied based on the

propensity scores. On IHDP datasets, following the settings

in [11], with probability q, we remove the control units that

have propensity score closest to 1. Removing the control unit

close to 1 creates less overlap between the control and treated

groups. Thus, the higher the q is, the larger the selection bias

is. We vary the removing probability q from 0.5 to 1.
Case 2: the selection bias is varied based on the

variables. On Twins dataset, following the settings in [25],

the selection bias is varied based on the variable GESTAT10,

which is highly correlated with the outcome. The treatment

is assigned as follows: ti|xi ∼ Bern(Sigmoid(w
′
−gxi,−g +

wg(xi,g/10 + 0.1) + n)),w−g ∼ U(−0.1, 0.1)39×1,wg ∼
N (μg, 0.1), n ∼ N (0, 0.1) where xi,−g denotes the pre-

treatment covariates except the GESTAT10, and xi,g is the

GESTAT10. The μg controls the weight of GESTAT10 in the

treatment assignment procedure. By varying μg from 0 to 5,

different levels of selection bias are simulated.
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TABLE I: Performance Comparison.

IHDP (EPEHE) Jobs (Rpol) Twins (ÊPEHE)

Method Within-Sample Out-of-Sample Within-Sample Out-of-Sample Within-Sample Out-of-Sample

OLS/LR1 10.761± 4.350 7.345± 2.914 0.297± 0.010 0.307± 0.084 0.308± 0.001 0.309± 0.012
OLS/LR2 10.280± 3.794 5.245± 0.986 0.295± 0.006 0.297± 0.084 0.313± 0.002 0.312± 0.020

HSIC-NNM 2.439± 0.445 2.401± 0.367 0.291± 0.019 0.311± 0.069 0.602± 0.010 0.606± 0.028
PSM 7.188± 2.679 7.290± 3.389 0.292± 0.019 0.307± 0.053 0.607± 0.015 0.597± 0.021
k-NN 4.432± 2.345 4.303± 2.077 0.230± 0.016 0.262± 0.038 0.534± 0.008 0.573± 0.022

C. Forest 4.732± 2.974 4.095± 2.528 0.232± 0.018 0.224± 0.034 0.306± 0.000 0.305± 0.003

BNN 3.827± 2.044 4.874± 2.850 0.232± 0.008 0.240± 0.012 0.307± 0.001 0.309± 0.004
TARNet 0.729± 0.088 1.342± 0.597 0.228± 0.004 0.234± 0.012 0.314± 0.001 0.313± 0.002

CFR-MMD 0.663± 0.068 1.202± 0.550 0.213± 0.006 0.231± 0.009 0.312± 0.001 0.316± 0.003
CFR-WASS 0.649± 0.089 1.152± 0.527 0.225± 0.004 0.225± 0.010 0.308± 0.001 0.309± 0.003

SITE 0.604± 0.093 0.656± 0.108 0.224± 0.004 0.219± 0.009 0.309± 0.002 0.311± 0.004

ACE (Ours) 0.489± 0.046 0.541± 0.061 0.216± 0.005 0.215± 0.009 0.306± 0.000 0.301± 0.002

Within-Sample Out-of-Sample
0

0.5

1

1.5

2

(a) IHDP

Within-Sample Out-of-Sample
0.19

0.2

0.21

0.22

0.23

0.24

0.25

(b) Jobs

Within-Sample Out-of-Sample
0.29

0.295

0.3

0.305

0.31

0.315

0.32

(c) Twins

Fig. 3: The effect of BAS regularization.
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(d) Case 2: Twins Out-of-Sample

Fig. 4: Results on Datasets with different Selection Bias

2) Result Analysis: Fig. 4 reports the performance of the

proposed method as well as the baseline methods (SITE, CFR-

MMD) on IHDP and Twins datasets.

In Case 1, as shown in Fig. 4(a) and Fig. 4(b), in

both within-sample and out-of-sample settings, the proposed

method always performs the best for different selection bias.

The observed results indicate that our proposed method is

robust to different levels of selection bias. In Case 2, as shown

in Fig. 4(c) and Fig. 4(d), it is observed that the performance

of different methods varies a lot. The CFR-MMD and SITE

methods are sensitive to the selection bias level. And the

performance of ACE is much more stable under different levels

of selection bias.

IV. RELATED WORK

The existing methods of estimating the individual causal

effect can be divided into five categories. (1) Regression-

based models, such as double robust estimator [26], [27] and

balancing linear regression (BLR) [10]. (2) Tree-based models,

such as Bayesian additive regression trees (BART) [28], ran-

dom forest [24], [29]. (3) Nearest neighbor based methods,

such as k-NN [23], propensity score matching [18], and

nearest neighbor matching through HSIC criteria [22]. (4)

Multi-task learning based methods, such as multi-task neural

network [30] and multi-task Gaussian process [31]. (5) Deep

representation learning based methods. Feed-forward neural

network and variational autoencoder have been adopted to

learn the representation and estimate the counterfactuals [10]–

[12], [25], [32].

The fifth category of deep representation learning methods

usually perform better than other categories, as demonstrated

by extensive evaluations. Our method ACE belongs to this

category. In this category, except SITE [12], most of the

methods ignore the similarity information when learning the
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representation. Compared with existing similarity preserved

method SITE, which only includes the selected triplets’ in-

formation, ACE designs a more powerful regularization to

achieve the following two expectations: (1) Precisely mini-

mizing the discrepancy of control/treatment group, in order

to make the two groups overlap as much as possible; (2)

Adaptively retaining most of the important pairwise similarity

according to the data location in the original space, which

is the fine-grained similarity. With the help of the designed

regularization, ACE achieves the state-of-the-art performance

on causal effect estimation.

V. CONCLUSION

Estimating causal effect at the individual level is the base of

causal inference. In this paper, we present a new approach for

causal effect estimation by adaptively preserving similarity in

representation learning. Different from the existing similarity-

preserving based work, the proposed method ACE imposes the

BAS regularization to fully explore the fine-grained similarity

information in the original space and retain as much important

similarity information as possible during the representation

learning procedure. Extensive experiments on three benchmark

datasets show that ACE consistently outperforms the state-

of-the-art methods, which demonstrates the effectiveness of

ACE in estimating the causal effect. Further experiments on

the datasets with different levels of selection bias confirm

that compared with existing methods, the BAS regularization

makes ACE more robust to the selection bias.
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