
Malicious Attacks against Deep Reinforcement Learning
Interpretations

Mengdi Huai
1
, Jianhui Sun

1
, Renqin Cai

1
, Liuyi Yao

2
, Aidong Zhang

1

1
University of Virginia, Charlottesville, VA, USA

2
State University of New York at Buffalo, Buffalo, NY, USA

1
{mh6ck, js9gu, rc7ne, aidong}@virginia.edu,

2
liuyiyao@buffalo.edu

ABSTRACT
The past years have witnessed the rapid development of deep rein-

forcement learning (DRL), which is a combination of deep learning

and reinforcement learning (RL). However, the adoption of deep

neural networks makes the decision-making process of DRL opaque

and lacking transparency. Motivated by this, various interpretation

methods for DRL have been proposed. However, those interpreta-

tion methods make an implicit assumption that they are performed

in a reliable and secure environment. In practice, sequential agent-

environment interactions expose the DRL algorithms and their

corresponding downstream interpretations to extra adversarial risk.

In spite of the prevalence of malicious attacks, there is no existing

work studying the possibility and feasibility of malicious attacks

against DRL interpretations. To bridge this gap, in this paper, we

investigate the vulnerability of DRL interpretation methods. Specif-

ically, we introduce the first study of the adversarial attacks against

DRL interpretations, and propose an optimization framework based

on which the optimal adversarial attack strategy can be derived. In

addition, we study the vulnerability of DRL interpretation meth-

ods to the model poisoning attacks, and present an algorithmic

framework to rigorously formulate the proposed model poisoning

attack. Finally, we conduct both theoretical analysis and extensive

experiments to validate the effectiveness of the proposed malicious

attacks against DRL interpretations.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Machine learning; • Security and privacy;

KEYWORDS
Deep reinforcement learning; model interpretation; adversarial

attacks; poisoning attacks

ACM Reference Format:
Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, Aidong Zhang. 2020.

Malicious Attacks against Deep Reinforcement Learning Interpretations. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403089

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403089

1 INTRODUCTION
In recent years, there has been increasing interest in RL, a machine

learning paradigm that has achieved great success in addressing

challenging sequential decision-making problems [20]. The key

components of RL include an agent and its environment, where the

agent learns an optimal action selection policy by iteratively inter-

acting with and receiving rewards from its environment. RL has

served in a wide spectrum of applications, such as healthcare, au-

tonomous navigation, and optimal control. In reality, many achieve-

ments of RL are due to its combination with deep learning. This

combination, called DRL, is more capable of handling tasks with ei-

ther high dimensional state space or complex task selection policy.

Recently, various DRL algorithms have been developed, includ-

ing deep Q-networks (DQN) [15], trust region policy optimization

(TRPO) [18], and asynchronous advantage actor-critic (A3C) [5].

Although DRL techniques have shown superior performance

in many real-world applications, their decision-making process is

opaque and lacking transparency, which makes the inner workings

of DRL models incomprehensible for human users. The “black box”

nature of the DRL models may impede users from trusting the

predicted results, especially when the model is used for making

critical decisions (e.g., medical diagnosis and autonomous driving),

because the consequences may be catastrophic if the predictions are

acted upon blind faith. To address this problem, a plethora of DRL

interpretation methods have been proposed to gain insight into

the decision-making process of DRL agents [2, 5, 15, 21, 22, 24, 25].

These interpretation methods can provide explanations for par-

ticular predictions of DRL models and help humans understand

the inner mechanisms. For example, at each time step of a sepsis

patient’s trajectory, doctors can use these interpretation methods

to interpret the clinical decision making. However, an implicit as-

sumption for these DRL interpretation methods is that they are

performed in a reliable and secure environment, which may not

be true in practice. As DRL interpretations play an increasingly

critical role in many real-world applications, they are susceptible

to a risk of being maliciously attacked. In this paper, we consider

two representative types of attacks against DRL interpretations:

adversarial attack and model poisoning attack.
Adversarial Attack. This type of attacks happens in the test-

ing stage of DRL where the attacker tampers the input data after

the victim DRL model is trained. Unlike deep supervised learning

models, where decision is made instantaneously and independently,

adversarial attacks to DRL models are extremely difficult to analyze

quantitatively and defend effectively, as DRL models involve a tem-

porally dependent sequential decision making process where states

at different time-steps are perturbable. At each targeted victim

time-step, the attacker’s goal is to fool both the DRL model and the

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

472

https://doi.org/10.1145/3394486.3403089
https://doi.org/10.1145/3394486.3403089

corresponding DRL interpretation method through manipulating

the current state observation that is communicated between the

agent and the environment. For example, at a specific time step

of a sepsis patient’s trajectory, the attacker could add adversarial

perturbation onto patient’s clinical records, which not only causes

the DRL model to produce wrong medical decision but also leads

the adopted interpreter to give wrong interpretation results.

Model Poisoning Attack. Different from the adversarial at-

tacks at the testing stage, the model poisoning attacks occur in the

training stage of DRL. In this type of attacks, the attacker aims to

dramatically degrade the performance of the DRL interpretation

methods through manipulating the learned DRL model parameters,

while maintaining the original performance of DRL model to en-

sure maximal stealthiness. This type of attacks is common in many

real-world applications. Consider the example where due to the

vast computational cost of training DRL models, the agent resorts

to downloading the well-trained DRL model from an online model

repository to complete its own tasks. However, during this process,

the attacker could perform the model poisoning attack to manip-

ulate the pre-trained DRL model to make the agent unwittingly

download a maliciously re-trained DRL model.

Despite the prevalence of malicious attacks in real-world appli-

cations, there is no existing work studying the vulnerability of DRL

interpretations to these attacks. Although there are some works ad-

dressing the adversarial vulnerability of the interpretation methods

for supervised deep neural networks (DNN) based classification

models [1, 4, 11, 23, 26], they cannot be directly applied to DRL

interpretations due to the following unique features of DRL: First

of all, they only focus on attacking a particular test instance in

supervised classification settings, and ignore the agent’s sequential

decision-making process that consists of a continuous sequence

of state-action predictions. If we directly adopt these per-instance

attack methods and craft different perturbations to different states,

the computation complexity will be extremely high. Secondly, a

human imperceptible per-instance attack as in supervised deep

learning models, may be highly noticeable for DRL agent as a tiny

perturbation in one certain state may have unpredictable and appar-

ent shift towards the whole future path. DRL is in fact goal-oriented,

and it aims to learn sequences of actions that can lead the agent

to achieve its goal. For example, in the autonomous driving sce-

narios, the ultimate goal of the agent is to successfully and safely

reach the desired destination. If an attacker locally perturbs some

states with per-instance perturbation methods without a global

grasp of agent’s end goal, the agent can easily detect the attack

based on the deviation away from his desirable destination. Thus,

the attacker who aims to attack the DRL models should be more

cautious because he needs not only to guarantee the impercepti-

bility of local perturbations, but also to avoid compromising the

end goal of the agent. Last but not least, an implicit assumption

in the existing adversarial attack methods is that the attacker has

the capability of manipulating the whole input data (e.g., the entire

image). However, in practice, the attacker may be restricted to only

manipulating a subset of each input data point (e.g., the bottom

right region where digital watermark is), and hence this assumption

may be impractical for the real-world physical attacks.

As for the model poisoning attacks, to the best of our knowledge,

there is no existingwork studying the vulnerability of interpretation

models to such attacks. The challenge here is how to manipulate

the pre-trained DRL model such that the attacker can dramatically

alter the interpretation results without significantly hurting the

performance of the DRL model. If the performance of the DRL

model is significantly degraded after the manipulation, the model

poisoning attack can be easily detected by evaluating on a holdout

set, and then the manipulated DRL model will be immediately

rejected by the agent.

To well understand the performance of DRL interpretations in

malicious environment, in this paper, we study their vulnerability

to the above two types of attacks. Specifically, we first propose an

universal adversarial attack against DRL interpretations (UADRLI),
based on which the attacker can add the crafted universal pertur-

bation to the environment states on a maximum number of time

steps while incurring minimal damage to the agent’s end goal. In

our design, the optimal attack strategy can be efficiently derived by

solving an optimization problem even with the sequential and pro-

gressive nature of DRL taken into account. Additionally, we propose

a model poisoning attack against DRL interpretations (MPDRLI),
based on which the attacker can manipulate the pre-trained DRL

model such that the attacker can dramatically alter the interpreta-

tion results without significantly hurting the efficacy of the original

DRL model. With the proposed model poisoning manipulation,

the interpretations can be successfully misled in multiple experi-

mental settings. We also provide theoretical results indicating the

change in overall efficacy of DRL model is strictly bounded, which

guarantees the difficulty to detect such attacks. To summarize, our

contributions are:

• First of all, we propose an universal adversarial attack against

DRL interpretations (i.e., UADRLI), which aims to craft a

single universal perturbation that can be applied identi-

cally (uniformly) on every time step. Based on the proposed

UADRLI, the attacker can efficiently deceive downstream

DRL interpretation methods via state perturbations.

• We also design a model poisoning attack against DRL in-

terpretations (MPDRLI), based on which the attacker can

secretly alter the interpretation results through providing

the agent a strategically poisoned but equally effective pre-

trained DRL model.

• Both theoretical analysis and extensive experimental results

validate the effectiveness of the proposed malicious attacks

against DRL interpretations.

2 PRELIMINARY
Deep Reinforcement Learning. In RL, an agent aims to learn

an optimal behavior through trial-and-error by sequentially inter-

acting with an environment, which is referred to as the Markov

Decision Process (MDP) defined with a tuple < S,A,P,R,γ >. In
a MDP, the agent interacts with its environment in the following

way: The agent starts by gathering an initial state s0 ∈ S that

describes the environment. At each time step t , the agent chooses
an action at ∈ A according to some policy π based on the current

state st ∈ S (i.e., at = arg maxa∈A π (st ,a)), and progresses to a

new state st+1 ∈ S according to the transition dynamics P. Ad-

ditionally, the agent receives a scalar reward r (st ,at) = R(st ,at),

provided by the reward function R, which judges the quality of

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

473

its decision. This sequential decision making process produces a

sequence of state-action pairs T = {(st ,at)}Tt=0
, where T is the

timestep that the environment terminates. The return is computed

as R =

∑T
t=0

γ t r (st ,at), where γ ∈ [0, 1] is a discount factor indicat-

ing howmuch the agent values an immediate reward compared to a

future reward. The agent’s goal is to find a policy π∗ that maximizes

the expected value of the total reward from all states

π∗ = arg max

π
{E[

T∑
t=0

γ t r (st ,at)]}, (1)

where E denotes the expectation over all possible trajectories gen-

erated by policy π . DRL is the combination of deep learning and

RL, and is proposed to overcome the challenges in learning control

policies from high-dimensional raw input data and large state and

action spaces in traditional RL environments. In DRL, we represent

the policy π with a deep neural network that is parameterized by

Θ (i.e., the weights of the policy network). To find out the opti-

mal policy parameters, many different DRL algorithms have been

proposed, including DQN [15], TRPO [18], and A3C [5].

Interpretation Methods for Deep Reinforcement Learn-
ing. Currently, many works have been proposed to make DRL

more transparent. In general, existing interpretation methods for

DRL can be grouped into two categories: intrinsic interpretability

and post-hoc interpretability. The latter case does not require mod-

ifying model architectures or parameters, thereby leading to higher

prediction accuracy. In this paper, we mainly consider post-hoc

interpretations. Formally, for the given state-action pair (st ,at) and

policy π , the post-hoc interpreter I can generate the feature im-

portance scores I(st ,at ;π), which measures how important each

feature of the state st is, in determining the corresponding action

at under policy π . In the following, we describe several widely-

used post-hoc interpretation methods for DRL, all of which aim to

generate feature importance scores (also called saliency maps) to

show the relevancy of each feature for the prediction.

• Gradient saliency. This method [5] is a generic interpreta-

tion method that combines gradient information with class

activation maps to visualize the importance of each feature.

The map is computed as I(st ,at ;π) =
∂π (st ,at)

∂st
, and quanti-

fies how sensitive the action prediction score (i.e., π (st ,at))

is with respect to the small changes of input features.

• Jacobian saliency.Wang et al. [21] extend gradient-based

saliency maps to DRL by computing the Jacobian of the out-

put logits with respect to a stack of input images. Specifically,

to visualize the salient part of the image as seen by the value

stream, they compute the absolute value of the Jacobian of

the predicted state value with respect to the input frame.

• Object saliency. Iyer et al. [9] use template matching, a

common computer vision technique, to detect objects within

an input image and measure saliency through changes in

Q-values for masked and unmasked objects.

• Perturbation saliency. Greydanus et al. [5] use saliency

maps to provide explanations for the DRL agent’s behaviors

over temporally extended sequences. Specifically, they gen-

erate saliency maps by perturbing the original input image

using a Gaussian blur of the image and measure changes in

policy from removing information from a region.

Note that all of the above interpretation methods for DRL focus on

instance-level interpretability, which means the different interpre-

tation results would be given on different state-action pairs in one

episode, and provide the importance score of each feature.

3 ADVERSARIAL ATTACK AGAINST DRL
INTERPRETATIONS

In this section, we first introduce the threat model and then develop

an optimization framework to formalize our universal adversarial

attack against DRL interpretations (i.e., UADRLI). After that, we

present the theoretical analysis for the proposed universal attack.

3.1 Threat Model
Following the line of work on adversarial attacks [1, 4, 11, 23, 26],

we here assume a white-box setting, which is a conservative and

realistic assumption. The attacker in this setting tries to evade the

system by manipulating malicious states during the testing phase.

The attacker cannot change the DRL algorithm used for the training

of the agent, and cannot change the architecture of the policy

networks. The attacker can only change the state observations that

are communicated between the agent and the environment. The

attacker’s goal is to deceive both the trained DRL model and its

adopted interpretation method.

3.2 Formalization of Universal Adversarial
Attack

In the adversarial attack settings, when we design the adversarial

attack against DRL interpretations, we need to take the unique

characteristics of DRL into account. Firstly, the attacker should han-

dle the sequentiality of DRL, and this sequential decision-making

process produces a sequence of state-action pairs {(st ,at)}Tt=0
. If we

directly adopt existing methods on supervised learning attacks and

craft state-dependent adversarial perturbations, the computation

complexity will be significantly increased due to the generation of

a large amount of perturbations different with each other. Addition-

ally, when generating state-dependent perturbations, the attacker

has to query the victim DRL model at test time. Instead, we pro-

pose to add the state-agnostic perturbations. Specifically, we aim

to craft a single universal adversarial perturbation (dubbed as δ),
which can be identically (uniformly) applied on every observed

state without accessing the target victim DRL model at test time.

We further restrict the attacker to only manipulating pixels within

a small region of the image-the attacker may choose the location

of the area, but cannot perturb pixels outside this selected image

area. Formally, for any given observed state st , the attacker crafts
the corresponding adversarial state s̃t as follows

s̃t = A(st ,kt ∗M,δ) = (1 − kt ∗M) ⊙ st + (kt ∗M) ⊙ δ , (2)

where kt ∈ {0, 1}, ⊙ denotes the matrix element-wise product,

and δ is the universal perturbation to be generated. Here, M is

a predefined binary mask matrix representing the position and

shape of the area that can be attacked. Note that kt ∈ {0, 1} denotes

whether at time step t the perturbation should be applied (kt = 1) or

not (kt = 0). Specifically, ifkt = 1,A(st ,ktM,δ) = (1−M)⊙st +M⊙δ .
Otherwise, A(st ,ktM,δ) = (1 − (0 ∗ M)) ⊙ st + (0 ∗ M) ⊙ δ =

1 ⊙ st = st . Secondly, we should make sure that the universal

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

474

adversarial perturbation (i.e., δ) that causes the wrong predictions

is imperceptible. We use parameter ϵ to control the magnitude of

the universal perturbation δ . Specifically, given a state st of the
system, the attacker can only select a perturbed state s̃t as

s̃t ∈ {s̃t ∈ S : d(st , s̃t) ≤ ϵ}, (3)

where d(st , s̃t) = ∥st − s̃t ∥∞ = ∥δ ∥∞. Thirdly, when added to any

clean state st , the universal adversarial perturbation will cause the

policy to select a different action at this state and the interpretation

results to be wrong at the same time. Note that the attacked image

region is the real reason why the policy alters decision. Hence, the

attacker should mislead the interpreter to highlight other image

regions that are not perturbed. In addition to fooling the interpreter

for DRL, when adding δ to state st at time step t , the attacker also
wants to mislead the agent to take any wrong action (instead the

original optimal action), that is,

arg max

a∈A
π (st ,a) ̸= arg max

a∈A
π (s̃t ,a), (4)

where s̃t is calculated based on Eq. (2). Last but not least, since

DRL is goal-oriented, the attack will be easily detected if the at-

tacker perturbs the observed state at every time step. The reason

is that when the attacker perturbs every observed state, the final

accumulated reward will be largely compromised. On the attacker’s

side, he also wants to maximize his expected utility. In this paper,

we consider the case where the attacker wants to maximize the

total number of attacked time steps (i.e.,

∑T
t=0

kt). On the other

hand, to avoid being detected, the attacker should also make sure

that the end goal of the entire DRL task is not significantly com-

promised. In practice, the end goal of the agent is formalized in

terms of the accumulated reward in the long run. Specifically, the

attacker should make sure that the difference of the accumulated

reward before and after the attack should be small, and the differ-

ence is defined as (

∑T
t=0
Eπ [γ t r (s̃t , ãt)] −

∑T
t=0
Eπ [γ t r (st ,at)])

2
,

where ãt = arg maxa∈A π (s̃t ,a). Now, the problem is how can

the attacker find an effective attack strategy {k0, · · · ,kT } with the

corresponding single universal perturbation δ , which not only max-

imizes the attacker’s utility (i.e.,

∑T
t=0

kt) but also incurs minimal

damage to the agent’s end goal.

Based on the above arguments, the attacker’s goal is to add

smallest (imperceptible) universal perturbation to the environment

states in a maximum number of steps while incurring minimal
damage to the agent’s end goal. With this goal in mind, for the given

episode that consists a sequence of state-action pairs {(st ,at)}Tt=0

and the threat model, at high level, we formulate the proposed

adversarial attack using the following optimization framework

min

δ, {kt ∈{0,1}}Tt=0

(

T∑
t=0

Eπ [γ t r (s̃t , ãt)] −
T∑
t=0

Eπ [γ t r (st ,at)])
2

+ λ1

T∑
t=0

exp(I(s̃t , ãt ;π) ⊙M) − λ2

T∑
t=0

kt

s .t . ∀t ∈ [T], s̃t = A(st ,kt ∗M,δ)

∀t ∈ [T], ãt = arg max

a∈A
π (s̃t ,a),

∥δ ∥∞ ≤ ϵ,

∀t ∈ T1, arg max

a∈A
π (st ,a) ̸= arg max

a∈A
π (s̃t ,a), (5)

where T1 = {t : kt = 1} denotes the set of time steps being attacked,

and λ1 and λ2 are two regularization parameters. The first loss

term is utilized to enforce that the actual ultimate accumulated

reward does not change significantly. The second loss term is used

to decrease the importance scores of the pixels that are within

the attacked image region. The third loss term is introduced to

maximize the attacker’s utility (i.e., the number of attacked time

steps). The two hyper-parameters (i.e., λ1 and λ2) balance the three

factors. The third constraint allows the attacker to manipulate all

the states that the agent perceives within an ϵ budget, and hence

ensures that the universal perturbation (i.e., δ) is imperceptible.

The last constraint forces that the action predictions are wrong.

3.3 Optimization
In this section, we discuss how to solve the optimization problem

described in Eq. (6). However, it is very challenging to directly solve

the above optimization problem as it involves too many variables.

To address this challenge, we propose to convert it into two sub-

problems, and then solve them in two separate steps. Specifically,

in the first step, we aim to figure out the universal adversarial

perturbationδ by solving a sub-optimization problem. In the second

step, we solve the problem of identifying the optimal attack strategy

{k0, · · · ,kT }. Below, we elaborate the two steps in greater detail.

Step 1: Generating the Universal Adversarial Perturba-
tion. In this step, we focus on how to generate the universal ad-

versarial perturbation (i.e., δ), which can be applied identically on

every time step. As aforementioned, when generating the universal

adversarial perturbation δ , the attacker should satisfy the following
requirements: Firstly, when applying the universal adversarial per-

turbation (i.e., δ) to each observed state, the attacker should make

sure that not only the predicted action is altered but also the corre-

sponding interpretations are wrong. Additionally, we should note

that the attacker is restricted to only manipulating pixels within a

small region of the input image. Based on the above two restrictions,

for the given unattacked trajectory {(st ,at)}Tt=0
, we formulate the

following optimization problem

min

δ

T∑
t=0

1

T + 1

π (s̃t ,at) + λ1

T∑
t=0

1

T + 1

exp(I(s̃t , ãt ;π) ⊙ M)

s .t . ∀t ∈ [T], s̃t = A(st ,M,δ),

∀t ∈ [T], ãt = arg max

a∈A
π (s̃t ,a),

∥δ ∥∞ ≤ ϵ, (6)

whereA(st ,M,δ) = (1−M)⊙ st +M ⊙δ . The first loss term is used

to force the agent to take an arbitrary action (instead of the original

optimal action). The second term is used to fool the interpretation

results. The first constraint enforces the attacker to only manipulate

a small region of the input data. The last constraint aims to find

the sufficiently imperceptible universal perturbation that leads to

the wrong action prediction and interpretations desired by the

adversary. To derive the universal perturbation δ , we can solve the

above optimization problem using the projected gradient algorithm.

Step 2: Identifying Attack Points. Note that after Step 1, the

attacker can generate the universal perturbation δ that can be iden-

tically applied to every time step. However, as aforementioned, if

the attacker perturbs the observed state at every time step, the

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

475

launched universal attack will be easily detected due to the signifi-

cant decrease in the end reward. Hence, in this step, we discuss how

to identify the optimal attack strategy {k0, · · · ,kT } by strategically

selecting a set of time steps. With this identified attack strategy, the

attacker can maximize his attack utility while avoiding being de-

tected. To derive the attack strategy, at each time step, the attacker

first computes the variance of the Q value as follows

Var (Q(st)) =

1

|A|−1

|A |∑
i=1

(Q(st ,ai) −
1

|A|

|A |∑
j=1

Q(st ,aj))
2, (7)

where A is the action space of the MDP, and |A| is the number

of actions. Then, according to the above calculated variance, the

attacker decides whether he should perturb st . Based on Lemma

3 (in Appendix), we know that when attacking states with low

variance, the attacker will get more reward in expectation. Hence,

to avoid being detected, the attacker should attack the states with

low variance to incur low decrease in the accumulated reward.

3.4 Theoretical Analysis
In this section, we theoretically quantify the influence of our pro-

posed universal attack on the accumulated reward collected by

the agent throughout the game. To do so, we first characterize the

environment under attack as a new MDP
1
(denoted as M1 orM2,

depending on detailed attack setup), which is different from the

original MDPM in its transition probability and immediate reward

function. Then we have the following theorem.

Theorem 1. Let V ∗, V ∗
1
, and V ∗

2
be optimal value functions for

M, M1, and M2, respectively. Note that the value function is equal
to the expected total reward for an agent starting from a particular
state. Suppose M, M1, and M2 have bounded immediate rewards,
i.e., maxs ∈S,a∈A |R(s,a)| ≤ R. Let TV (P,Q) be the total variation
distance between two probability measures P and Q on S. Let ∥ f −

д∥∞ = maxs ∈S,a∈A | f (s,a) − д(s,a)|. Suppose M has transition
and immediate reward models which are continuous on S, i.e., ∀s ∈

S,a ∈ A, ∥P(·|s,a)−P1(·|s,a))∥1 ≤ Lϵ , and |R(s,a)−R2(s,a)| ≤ lϵ ,
for some constant L and l . Then, we have

∥V ∗ −V ∗
1
∥∞

≤
2γR

(1 − γ)
2

max

s ∈S,a∈A
TV (P(·|s,a),P1(·|s,a)) ≤

γRL

(1 − γ)
2
ϵ,

∥V ∗ −V ∗
2
∥∞

≤

2γR max

s ∈S,a∈A
TV (P(·|s,a),P2(·|s,a)) + (1 − γ)∥R − R2∥∞

(1 − γ)
2

≤
γRL + (1 − γ)l

(1 − γ)
2

ϵ . (8)

The above theorem upper bounds the change in the optimal

total accumulated reward if all time steps in the episode of game

playing are perturbed. Note that in our proposed adversarial attack

paradigm, we control the total number of attacked time steps in one

episode. Therefore, the result from Theorem 1 on value function,

which is essentially the sum of discounted rewards from all time

steps, is insufficient. Accordingly, we define T -step value function

1
Due to space constraints, both the formal definitions of M1 and M2 , and the proof

of the theorems are deferred to Appendix.

(in Appendix) to formally measure the influence of the attacker on

the accumulated reward collected only from the perturbed T steps.

Then, based on this, we can derive the following theorem.

Theorem 2. SupposeM,M1, andM2 satisfy the same assump-
tions as in Theorem 1.V ∗,V ∗

1
, andV ∗

2
are optimal value functions for

M,M1, andM2, respectively. π∗, π∗
1
, and π∗

2
are optimal policies for

M, M1, and M2, respectively. Denote max(Lϵ, lϵ) to be δ . Suppose
π∗ is executed on Mi for T steps, we denote T -step value func-
tion under policy π∗ asVπ ∗

i (s,T) = E[

∑T−1

t=0
γ tRi (st ,π∗(st))|s0 =

s]. We denote the maximum possible T -step return by GT =

maxs ∈S Vπ ∗

(s,T). For all ω ≥ 0, if ϵ ≤ 1

max(L,l) (
ω

12 |S |TGT
)
2, we

have |Vπ ∗

(s,T) −Vπ ∗

i (s,T)| ≤ ω, where i ∈ {1, 2}.

From Theorem 2, we can see that when the agent unconsciously

executes the original optimal policy in the adversarially perturbed

environmentM1/M2, since the agent is not allowed to re-train the

policy network, the fluctuation measured by T -step value function

the agent may experience, is well bounded if the perturbation the

attacker imposes is small, which validates our previous argument

on stealthiness of our proposed attack.

4 MODEL POISONING ATTACK AGAINST
DRL INTERPRETATIONS

In this section, we firstly describe the threat model considered in

the poisoning attack settings. Then, we present an algorithmic

framework to rigorously design a model poisoning attack against

DRL interpretations.

4.1 Threat Model
Here, we describe the threat model considered in our poisoning

attack. Different from traditional data poisoning attacks where the

attacker injects fake samples into the training dataset before the

training process of the victim model begins, we do not assume that

the attacker has full knowledge of the original training data. Instead,

we assume that the attacker in our setting only has access to the

pre-trained DRL model. The attacker’s goal is to manipulate the pa-

rameters of the pre-trained DRL model such that the interpretation

results are significantly altered. Consider the aforementioned ex-

ample where due to the limited computational resources, the agent

resorts to downloading the pre-trained DRL model provided by a

third party. During this process, the attacker could pose potential

threats to the system. To contrast with traditional data poisoning

attacks [13, 14], we here call our attack the model poisoning attack

since the attacker directly manipulates the pre-trained model pa-

rameters that are generated in the training phase instead of the

training dataset. In practice, model poisoning attacks are more ubiq-

uitous than data poisoning attacks as the attacker may not always

have access to the training database that is typically secured by pro-

fessional staff, while ordinary agent may acquire poisoned model

from the attacker disguised as third-party model provider.

4.2 Formalization of Model Poisoning Attack
In this section, we introduce our designed model poisoning at-

tack against DRL interpretations (i.e., MPDRLI). Note that in our

model poisoning attack setting, the attacker directly manipulates

the model parameters instead of the training data. However, if the

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

476

performance of the re-trained DRL model is significantly degraded,

the model poisoning attack can be easily detected by evaluating on

the validation games, and then the re-trained DRL model will be

immediately rejected by the agent. Hence, when the attacker ma-

nipulates the trained DRL model, he should guarantee that he can

dramatically alter the interpretation results without significantly

hurting the performance of the original DRL model. To address

this challenge, we propose to design our model poisoning attack

against DRL interpretations by fine-tunning the pre-trained DRL

model with the objective function that combines the ordinary loss

of the original DRL model with a penalty term that involves the

interpretation results. Without loss of generality, in the following,

we use the DQN algorithm [15] as a representative example of DRL

to present the proposed model poisoning attack (i.e., MPDRLI). Note

that the proposed MPDRLI is model-agnostic and can generalize to

other DRL algorithms naturally.

Note that a deep Q network estimates the Q-value function

by leveraging a multi-layered neural network. The input for the

network is the current state, and the output is the corresponding Q-

value for each of the action. Specifically, for each given state-action

pair (i.e., state st and action at), the deep Q-Network predicts the

corresponding Q-Value Q(st ,at ; Θ) through a forward pass, where

Θ are the parameters of the deep Q network. The valueQ(st ,at ; Θ)

is an estimate of the expected future reward that can be obtained

from (st ,at). The corresponding policy for a DQN is obtained by

choosing the action with the maximum Q-value for each state. The

deep Q-network parameters (i.e., Θ) can be derived by minimizing

the following mean-squared Bellman error

J (Θ) = E[(r (st ,at) + γ max

a∈A
Q(st+1,a; Θ−

) −Q(st ,at ; Θ))
2
],

where Θ−
represents the parameters of the target network, and the

parameters Θ of the online network are updated by sampling gra-

dients from minibatches of past transition tuples. The above mean

squared error measures the squared difference between the target

Q value (i.e., r (st ,at) + γ maxa∈A Q(st ,a; Θ−
)) and the current Q

output (i.e., Q(st ,at ; Θ)).

Here, we consider the case where the attacker wants to secretly

alter the model parameters, such that the agent cannot figure out

what features are really most important for the current action pre-

diction with targeted interpretation method. In our model poison-

ing attack settings, the attacker has no knowledge of the training

dataset Dtr but he can collect a substitute dataset D
′

tr by itera-

tively running the targeted model. Let pt,k (Θ∗
) denote the set of

pixels that had the top k highest saliency map values with inter-

preter I of the original clean DQN model (parameterized by Θ∗
),

for the state-action pair (st ,at). Note that to avoid being detected,

the attacker should maintain the performance of the retrained DRL

model, while only focusing on attacking the interpretation results.

In order to achieve the attack goals, based on the pre-trained model

parameters Θ∗
and the substitute dataset D

′

tr , the attacker can

manipulate the original clean DQN model as follows

min

Θ̃
L(Θ̃) = E[(r (st ,at) + γ max

a∈A
Q(st+1,a; Θ̃−

) −Q(st ,at ; Θ̃))
2
]

+ λ3 ∗
1

T + 1

T∑
t=0

∑
j ∈pt,k (Θ∗

)

exp(I(st ,at ; Θ̃)), (9)

where Θ∗
is the model parameters of the original unattacked DQN

model, λ3 is a trade-off parameter, and the penalty term is designed

to reduce the interpretation scores of the pixels that originally had

the top k highest values. By differentiating the above loss function

with respect to Θ̃, we can get the following gradient

∂L(Θ̃)

∂Θ̃
= E[(r + γ max

a∈A
Q(st ,a; Θ̃−

) −Q(st ,at ; Θ̃))

Q(st ,at ; Θ̃)

∂Θ̃
]

+ λ3 ∗
1

T + 1

T∑
t=0

∑
j ∈pt,k (Θ∗

)

(exp(I(st ,at ; Θ̃)) ∗
∂I(st ,at ; Θ̃)

∂Θ̃
).

(10)

Then, based on the above, we can re-train the DQN model by using

the projected gradient descent method [15]. Note that the original

parameters Θ∗
are used as the initialized parameters.

Discussion. In the above, we consider how to reduce the inter-

pretation scores of the pixels that originally have the top k highest

values. In practice, we can also make the interpretations always say

that some particular region of the input (e.g., boundary or corner

of the image), is important regardless of the input.

5 EXPERIMENTS
In this section, we firstly introduce the experimental setup in Sec-

tion 5.1. Then, we conduct experiments to validate the effectiveness

of the proposed universal adversarial attack against DRL interpre-

tations (i.e., UADRLI) in Section 5.2. Lastly, in Section 5.3, we verify

the effectiveness of the proposed model poisoning attack against

DRL interpretations (i.e., MPDRLI).

5.1 Experimental Setup
Model Setting. Our experimental implementation of the environ-

ments builds on OpenAI gym’s control environments with the

Atari physics simulator. In experiments, we train agents on Pong,

Breakout, and SpaceInvaders by using two state-of-the-art DRL

algorithms (i.e., A3C and DQN). We choose these three games be-

cause each of them poses a different set of challenges and the two

adopted DRL algorithms have historically exceeded human-level

performance on them. For evaluation, the game’s randomness seed

is reset for every episode. We also adopt two representative DRL

interpreters, i.e., the Jacobian and gradient saliency.

Table 1: The setting of parameters.

Parameter Value Parameter Value
learning rate 1e-4 λ1 1.0

discount factor (γ) 0.99 k 706

λ3 1.0 - -

Network Architecture and Parameter Setting. For the

adopted A3C algorithm, all of the Atari agents have the same re-

current architecture. The input at each time step is a preprocessed

version of the current frame, and the preprocessing operations

include gray-scaling, down-sampling by a factor of 2, cropping

the game space to an 80 × 80 square and normalizing the values

to [0, 1]. This input is processed by 4 convolutional layers (each

with 32 filters, kernel sizes of 3, strides of 2, and paddings of 1),

followed by an LSTM layer with 256 hidden units and a fully con-

nected layer with |A|+1, where |A| denotes the dimension of action

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

477

0 2M 4M 6M 8M 10M

Number of time steps

0

5

15

25

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(a) Pong

0 2M 4M 6M 8M 10M

Number of time steps

0

100

200

300

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(b) Breakout

0 2M 4M 6M 8M 10M

Number of time steps

0

200

400

600

700

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(c) SpaceInvader

Figure 1: Performance comparison of adversarial attacks on the accumulative reward.

space. For the adopted DQN algorithm, the network architecture

is a convolutional neural network with 3 convolution layers and

a fully-connected hidden layer. Specifically, the first hidden layer

convolves 32 filters of 8 × 8 with stride 4 with the input image and

applies a rectifier nonlinearity. The second hidden layer convolves

64 filters of 4 × 4 with stride 2, again followed by a rectifier nonlin-

earity. The third hidden layer convolves 64 filters of 3×3 with stride

1 followed by a rectifier. The final fully-connected layer consists

of 512 rectifier units. Here, the input RGB frame (i.e., the observed

state) is rescaled to 84 × 84. The output layer is a fully-connected

linear layer with a single output for each valid candidate action.

The setting of parameters is given in Table 1.

Baselines. For the proposed universal attack, in experiments, we

adopt two baselines: Firstly, we adopt the uniform adversarial attack

as the baseline, denoted as UniAck, which is a direct extension of

the traditional adversarial attacks on DRL. In UniAck, we apply the

generated universal perturbation to the observed state at each time

step. Additionally, we also compare the agent’s performance under

our proposed adversarial attacks with that under no adversarial

attack, denoted asNoAck. For the proposedmodel poisoning attack,

since there is no existing work addressing the vulnerability of

DRL to poisoning attacks, we adopt the no model poisoning attack

baseline (dubbed as NoPAck).

5.2 Experiments for Adversarial Attack
In this section, we evaluate the performance of the proposed uni-

versal adversarial attack (i.e., UADRLI). Unless otherwise specified,

in this experiment, we adopt the Jacobian saliency and restrict the

attacker to only manipulating the pixels at the top-left corner of the

input image, and set the size of the attacked image area as 40 × 40.

Additionally, given an episode that consists of an alternating se-

quence of state-action pairs, for the proposed UADRLI, we only

attack 10% of these state-action pairs that have the lowest Q value

variance. In contrast, for the baseline UniAck, we attack 10% of

these state-action pairs that have the largest Q value variance.

Performance of Adversarial Attack on the Discounted Ac-
cumulative Reward. Next, we compare the performance of the

proposed UADRLI with that of the two baselines by averaging the

total reward accumulated by the target agent. Here, for the proposed

UADRLI, the universal perturbation δ is crafted with ϵ = 0.12. For

an episode of game playing, we only attack 10% of the state-action

pairs that have the lowest Q value variance. In contrast, for the

adopted baseline UniAck, we attack 10% of the state-action pairs

that have the largest Q value variance. The experimental results on

the three adopted games are shown in Figure 1, where the y-axis is
the accumulated reward and the x-axis is the number of time steps.

The reference line in the figure is the purple line which corresponds

to the reward function under no attack (NoAck). From this figure,

we can see that the proposed UADRLI can reach the similar effect

of the original unattacked DRL model. In contrast, for the adopted

baseline UniAck that attacks the time steps where the variance of

the corresponding states are high, it suffers from the most severe

reduction in accumulated reward, which is also in accordance to

the conclusion of Lemma 3 (in Appendix) that attacking the states

with low variance incurs low decrease in the accumulated reward.

In sum, regardless of which game the agent plays, the proposed

UADRLI indeed incurs minor decrease in the policy’s performance.

Visualization. Next, we visually demonstrate the effectiveness

of the proposed UADRLI. To better visualize the experimental re-

sults, in this experiment, we set the value of ϵ as 0.12, and set the

size of the attacked image region as 20 × 20. In practice, we can set

ϵ as a much smaller value to make the crafted universal perturba-

tion δ more imperceptible. In Figure 2, we plot the visualization

results on the Pong game. In this figure, the leaftmost (i.e., Figure 2a)

is the original input image, the second one (i.e., Figure 2b) is the

adversarial image that is derived by adding the crafted universal

perturbation δ to its original unattacked state (i.e, Figure 2a), and

the rightmost (i.e, Figure 2c) highlights the most important fea-

tures that are identified by the adopted Jocabian interpreter. By

adding the universal perturbation, the trained agent, who should

have taken the “down” action, take the “up” action instead. And the

added perturbations at the top-left corner are the the real reason

for the wrong action prediction. However, from Figure 2c, we can

observe that the crafted universal perturbation can successfully

fool the adopted interpreter. That is to say, the adopted interpreter

cannot identify the attacked image region. These results show that

the proposed UADRLI not only leads the trained agent to make

wrong action judgement but also can avoid being detected.

(a) (b) (c)

Figure 2: Visualization results for the Pong game.

5.3 Experiments for Model Poisoning Attack
In this section, we evaluate the performance of the proposed model

poisoning attack (i.e., MPDRLI). The adopted DRL algorithm is

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

478

5M 10M 15M 20M 25M

Number of time steps

0

5

10

15

20

A
cc

u
m

u
la

te
d

 r
ew

ar
d

(a) Pong

5M 10M 15M 20M 25M

Number of time steps

0

300

600

900

A
cc

u
m

u
la

te
d

 r
ew

ar
d

(b) Breakout

5M 10M 15M 20M

Number of time steps

0

300

600

900

A
cc

u
m

u
la

te
d

 r
ew

a
rd

MPDRLI

NoPAck

(c) SpaceInvader

Figure 3: Performance of the proposed model poisoning attack on the accumulative reward.

1 30 60 90

Number of states

0

0.05

0.10

0.15

P
er

ce
n

ta
ge

(a) Pong

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
ge

(b) Breakout

Figure 4: Percentage of identified features when k = 706.

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
ge

(a) Pong

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
ge

(b) Breakout

Figure 5: Percentage of identified features when k = 1, 058.

DQN, and the adopted interpreter is the gradient saliency. In the

following experiment, unless otherwise specified, we set λ3 = 1.0

and k = 706, and there are 84 ∗ 84 features in total.

Performance on the Accumulated Discounted Reward.
First of all, we compare the performance of the proposed MPDRLI

with that of the adopted baseline (i.e., NoPAck) on the accumulated

reward. The experimental results are reported in Figure 3, where

x-axis denotes the number of time steps and y-axis represents the
accumulated reward. From this figure, we can see that the proposed

MPDRLI achieves similar performance as that of the adopted no

attack baseline (i.e., NoPAck). These experimental results verify

that the proposed model poisoning attack incurs minor decrease

to the performance of the original DRL model. In this way, the

proposed poisoning attack can remain undetected (i.e., stealthy). In

practice, if the performance of the poisoned DRL model is signifi-

cantly decreased, the agent can easily detect the launched attacks

by just checking the accumulated reward.

Performance on Altering the Interpretation Results. We

then evaluate the effectiveness of the proposed MPDRLI in terms

of altering the interpretation results. In this experiment, we first

let the agent play a game with the original DRL model, and then

select a sequence of state-action pairs from this entire game episode.

Next, for each selected state-action pair, we first use the adopted

interpreter to identify the k highest ranked features that are crucial

for explaining the prediction decision made by the original DRL

model. Then, for this state-action pair, we select the k highest

ranked features that explain the decision made by the poisoned

DRL model. After that, we count the number of the features in

the intersection between the two selected feature subsets. The

lower the number of features in the intersection, the better the

performance of the proposed MPDRLI. Based on this count, we

can calculate the percentage of features in the intersection over

the number of features originally identified by the interpreter. The

averaged experimental results are reported in Figure 4. Here, we

vary the number of the selected state-action pairs from 1 to 99.

Take Figure 4a as an example. From this figure, we can see that

the percentage of the features in the intersection is only around

0.10. In other words, the interpretation results generated from the

poisoned DRL model are significantly different from that of the

original clean model. Hence, the proposed MPDRLI can guarantee

that the top-ranked features cannot be identified by the agent. In

Figure 5, we also show the experimental results when the value

of k is set as 1, 058, which means that the attacker attacks 15% of

all the features that have the largest feature importance scores.

From this figure, we can also derive the same observation that the

interpretation results generated from the poisoned DRL model are

significantly different from that of the original clean DRL model.

6 RELATEDWORK
Adversarial Attacks against Deep Reinforcement Learning.
Recent studies [3, 7, 8, 16, 17] show that DRL algorithms are un-

avoidably susceptible to adversarial perturbations. [7] makes use of

white-box assumptions and proposes an attack method where the

attacker attacks every time step by applying the FGSM. [8] designs

a targeted controlling attack where the attacker can manipulate

the policy by adding the imperceptible noise to the observations

of the environment. [16] proposes adversarial attacks that lead the

agent into increased probability of taking worst possible actions.

[3] verifies the transferability of adversarial examples across dif-

ferent DQN models. [17] unveils how little it takes to deceive an

DRL policy by considering three restrictive settings. However, these

methods only focus on attacking specific states using traditional

per-instance techniques, and ignore the end goal of the entire DRL

task. In contrast, [12, 19] consider how to significantly deteriorate

the agent’s end reward. However, the agent can easily identify

the adversarial attack by simply comparing the consequent end

goal with his own desired one. Additionally, all of the above works

only focus on how to craft state-dependent perturbations, which

is computationally intractable in long state sequences. They also

make an implicit assumption that the attacker has the ability of

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

479

manipulating the whole input data. Lastly, they do not study the

vulnerability of DRL interpretations to the security threats.

Interpretation Models for Deep Reinforcement Learning.
Based on the interpretation stages, existing DRL interpretation

works can be generally divided into the following two categories:

intrinsic and post-hoc. The latter case does not require modifying

the model architectures or parameters, thereby leading to higher

prediction accuracy [6]. Motivated by this, considerable works

[2, 5, 15, 21, 22, 24, 25] have been proposed to provide post-hoc ex-

planations for explaining the model’s output for a given input. For

example, [22] takes a closer look at a slightly modified version of

Grad-CAM in the context of deep RL on Atari games. However, all

of these interpretation works assume a secure and reliable environ-

ment, and do not consider the vulnerability of DRL interpretations

to the malicious attacks.

Adversarial Attacks against Deep Learning Interpreta-
tions. Very recently, some works [1, 4, 11, 23, 26] are beginning

to study the vulnerability of the interpretation methods for deep

neural networks. For example, [4] demonstrates that explanation

maps can be sensitive to small perturbations in the image. Their

results can be thought of as untargeted manipulations, i.e., per-

turbations to the image which lead to an unstructured change in

the explanation map. However, these works only focus on how to

design adversarial attacks against supervised deep neural network

interpretations, and cannot be directly applied to DRL due to its

unique characteristics (e.g., the sequentiality of decision-making

process and the end-goal oriented property). Furthermore, these

works only consider the adversarial attack, and do not consider the

poisoning attack.

7 CONCLUSIONS
To the best of our knowledge, we are the first to study the vul-

nerability of DRL interpretations to the malicious attacks. More

specifically, in this paper, we firstly present an universal adversarial

attack against DRL interpretations (i.e., UADRLI), from which the

attacker can add the crafted universal perturbation uniformly to

the environment states in a maximum number of steps to incur

minimal damage to the agent’s end goal. Then, we design a model

poisoning attack against DRL interpretations (i.e., MPDRLI), based

on which the attacker can significantly alter the interpretation

results while incurring minor damage to the performance of the

original DRL model. Both theoretical analysis and extensive exper-

imental results are provided to demonstrate the effectiveness of

our proposed malicious attacks against DRL interpretations. Our

analysis provides valuable insights on malicious attacks against

DRL interpretations which will be useful to the researchers who

will study the approaches to defend such malicious attacks.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable comments and helpful suggestions. This work is supported

in part by the US National Science Foundation under grants IIS-

1924928, IIS-1938167 and OAC-1934600. Any opinions, findings,

and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt,

and Been Kim. 2018. Sanity checks for saliency maps. In NeurIPS. 9505–9515.
[2] Akanksha Atrey, Kaleigh Clary, and David Jensen. 2019. Exploratory Not Ex-

planatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement

Learning. arXiv preprint arXiv:1912.05743 (2019).
[3] Vahid Behzadan and Arslan Munir. 2017. Vulnerability of deep reinforcement

learning to policy induction attacks. In International Conference on Machine
Learning and Data Mining in Pattern Recognition. Springer, 262–275.

[4] Amirata Ghorbani, Abubakar Abid, and James Zou. 2019. Interpretation of neural

networks is fragile. In Proceedings of the AAAI Conference on Artificial Intelligence.
[5] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. 2017. Visualizing

and understanding atari agents. arXiv preprint arXiv:1711.00138 (2017).
[6] Mengdi Huai, Di Wang, Chenglin Miao, and Aidong Zhang. 2020. Towards

Interpretation of Pairwise Learning. In Thirty-fourth AAAI Conference on Artificial
Intelligence.

[7] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.

2017. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284 (2017).

[8] Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. 2019. Targeted Attacks

on Deep Reinforcement Learning Agents through Adversarial Observations.

arXiv preprint arXiv:1905.12282 (2019).
[9] Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia

Sycara. 2018. Transparency and explanation in deep reinforcement learning

neural networks. In Proc. of the AAAI/ACM Conference on AI, Ethics, and Society.
[10] Michael Kearns and Satinder Singh. 2002. Near-Optimal Reinforcement Learning

in Polynomial Time. Mach. Learn. (2002).
[11] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T

Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. 2019. The (un) reliability

of saliency methods. In Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning. Springer, 267–280.

[12] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,

and Min Sun. 2017. Tactics of adversarial attack on deep reinforcement learning

agents. arXiv preprint arXiv:1703.06748 (2017).
[13] Chenglin Miao, Qi Li, Lu Su, Mengdi Huai, Wenjun Jiang, and Jing Gao. 2018.

Attack under Disguise: An Intelligent Data Poisoning Attack Mechanism in

Crowdsourcing. In Proc. of the 2018 World Wide Web Conference. 13–22.
[14] Chenglin Miao, Qi Li, Houping Xiao, Wenjun Jiang, Mengdi Huai, and Lu Su.

2018. Towards data poisoning attacks in crowd sensing systems. In Proc. of
the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and
Computing. 111–120.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[16] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish

Chowdhary. 2018. Robust deep reinforcement learning with adversarial attacks.

In Proc. of the 17th International Conference on Autonomous Agents and MultiAgent
Systems. 2040–2042.

[17] Xinghua Qu, Zhu Sun, Pengfei Wei, Yew-Soon Ong, and Abhishek Gupta. 2019.

Minimalistic Attacks: How Little it Takes to Fool a Deep Reinforcement Learning

Policy. arXiv preprint arXiv:1911.03849 (2019).
[18] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust region policy optimization. In ICML. 1889–1897.
[19] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and

Yang Liu. 2020. Stealthy and efficient adversarial attacks against deep reinforce-

ment learning. arXiv preprint arXiv:2005.07099 (2020).
[20] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.

[21] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and

Nando De Freitas. 2015. Dueling network architectures for deep reinforcement

learning. arXiv preprint arXiv:1511.06581 (2015).
[22] Laurens Weitkamp, Elise van der Pol, and Zeynep Akata. 2018. Visual rational-

izations in deep reinforcement learning for atari games. In Benelux Conference on
Artificial Intelligence. Springer, 151–165.

[23] Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz

Erdogmus, Yanzhi Wang, and Xue Lin. 2018. Structured adversarial attack:

Towards general implementation and better interpretability. arXiv preprint
arXiv:1808.01664 (2018).

[24] Liu Yuezhang, Ruohan Zhang, and Dana H Ballard. 2018. An Initial Attempt of

Combining Visual Selective Attention with Deep Reinforcement Learning. arXiv
preprint arXiv:1811.04407 (2018).

[25] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. 2016. Graying the black box:

Understanding dqns. In ICML. 1899–1908.
[26] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and TingWang.

2020. Interpretable deep learning under fire. In 29th USENIX Security Symposium
(USENIX Security 20).

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

480

8 APPENDIX
Before presenting the proof of Theorem 1 and 2, we firstly introduce

the assumptions, the definition and the concept of the attacked

MDPs, which are used in the latter proof.

Assumption 1 (MDP Regularity). Suppose MDP M =<

S,A,P,R,γ > has finite state space, finite action space, and

bounded reward function, i.e., |S| ≤ ∞, |A| ≤ ∞, and ∥R∥∞ ≤ R,
where R is the upper bound of reward function.

Assumption 2 (Transition/Reward Continuity). Suppose two

MDPs: M ′
=< S,A,P ′,R ′,γ > and M ′′

=< S,A,P ′′,R ′′,γ >
share the same state space and action space. P ′′

(·|s,a) = P ′
(·|s̃,a)

and ∥s − s̃ ∥ ≤ ϵ . Suppose there exists a constant δ such that

for any s ∈ S and a ∈ A, ∥P ′
(·|s,a) − P ′′

(·|s,a)∥1 ≤ δ and

|R ′
(s,a) − R ′′

(s,a)| ≤ δ . In some literature,M ′′
is also said to be

δ -approximation of M ′
.

Definition 1 (T -step value function). Suppose MDP M =<

S,A,P,R,γ > satisfies Assumption 1. Following the definition

of value function under policy π : V π (s) = E[

∑∞
t=0

γ tR(st ,at =

π (st))|s0 = s] in previous section, we define T -step value function

to be the truncation of the first T discounted returns. Specifically,

Vπ
(s,T) = E[

∑T−1

t=0
γ tR(st ,π (st))|s0 = s]. Note the expectation is

taken over all possible paths the agent might follow starting from s
and of fixed length T . Further, we define the optimal T -step value

functionV∗
(s,T) = maxπ Vπ

(s,T). The optimal value function

could be viewed as the limit case of optimal T -step value function,

i.e., V∗
(s) = limT→∞V∗

(s,T). Finally, we denote the maximum

possible T -step return by GT = maxs ∈S V∗
(s,T).

Definition 2 (The attacked MDPs). Here, we define the follow-

ing two MDPs, which are different from original MDP M =<

S,A,P,R,γ > attempted to be attacked in either transition proba-

bility or immediate reward, indicating the new environments under

malicious attacks.

• M1 =< S,A,P1,R1,γ >, where P1(·|s,a) = P(·|s̃,a), and

R1(·|s,a) = R(·|s,a). P1 characterizes the system dynamics

where the next state follows the distribution P(·|s̃,a) given

the current state is s and the selected action is a, since the
current state has been crafted to s̃ .

• M2 =< S,A,P2,R2,γ >, where P2(·|s,a) = P(·|s̃,a), and

R2(s,a) = R(s̃,a). The system transition model P2 is exactly

the same as P1, while the immediate reward model R2 is

different. The reward the agent instantaneously collects from

the environment is R(s̃,a) inM2 given that the current state

is s and the selected action isa. We argue that bothR2 andR1

are ubiquitous in real-world settings, depending on whether

the environment from which the agent collects reward is

aware of the state crafting. M1 characterizes the scenario

where the attack is imperceptible to the system or the agent

obtains reward based on his own assessment of the current

state and action. On the contrary,M2 describes the setting

where the immediate reward is evaluated externally and the

attack is noticeable to the performance evaluation system.

Finding optimal malicious attack is equivalent to solving the

optimal policy forM1 andM2. In Theorem 1, we bound the differ-

ence of optimal value functions betweenMi andM, where i = 1, 2.

The importance of these bounds is to help us understand, to what

extent the malicious attack affects the long term reward and how

perceptible the attack could be to the participating agent. In The-

orem 2, we further study, if the attack takes place only in a finite

number of states, the difference of T -step value functions between

Mi and M, where i = 1, 2.

8.1 Proof of Theorem 1
Proof. Recall Bellman’s Equation for optimal value function

is V ∗
(s) = maxa∈A Es ′∼P(· |s,a)

[R(s,a) + γV ∗
(s ′)]. Let F be the

function class mapping from S to R. Define Bellman’s operator

B : F → F of MDP M =< S,A,P,R,γ > to be B ◦ V ∗
(s) =

maxa∈A Es ′∼P(· |s,a)
[R(s,a) + γV ∗

(s ′)].��V ∗
(s) −V ∗

1
(s)

��
= |B ◦V ∗

(s) − B ◦V ∗
1

(s)|

= max{B ◦V ∗
(s) − B ◦V ∗

1
(s),B ◦V ∗

1
(s) − B ◦V ∗

(s)}

≤
1

max

a∈A
|Es ′∼P(· |s,a)

[R(s,a) + γV ∗
(s ′)] − Es ′∼P1(· |s,a)

[R1(s,a) + γV ∗
1

(s ′)]|.

Suppose â ≜ arg maxa∈A Es ′∼P(· |s,a)
[R(s,a) + γV ∗

(s ′)],

and â1 ≜ arg maxa∈A Es ′∼P1(· |s,a)

[
R1(s,a) + γV ∗

1
(s ′)

]
.

The reason for inequality 1 is: if V ∗
(s) ≥ V ∗

1
(s),

B ◦ V ∗
(s) − B ◦ V ∗

1
(s) ≤ Es ′∼P(· |s, â)

[R(s, â) + γV ∗
(s ′)] −

Es ′∼P1(· |s, â)

[
R1(s, â) + γV ∗

1
(s ′)

]
; while if V ∗

(s) < V ∗
1

(s),

B ◦ V ∗
1

(s) − B ◦ V ∗
(s) ≤ Es ′∼P1(· |s, â1)

[
R1(s, â1) + γV ∗

1
(s ′)

]
−

Es ′∼P(· |s, â1)
[R(s, â1) + γV ∗

(s ′)]. In both cases, the inequality 1
holds.��V ∗

(s) −V ∗
1

(s)

�� ≤ max

a∈A
|Es ′∼P(· |s,a)

[γV ∗
(s ′)] − Es ′∼P1(· |s,a)

[γV ∗
1

(s ′)]|

≤
2

max

a∈A
|Es ′∼P(· |s,a)

[γV ∗
(s ′)] − Es ′∼P1(· |s,a)

[γV ∗
(s ′)]|︸ ︷︷ ︸

I

+ max

a∈A
|Es ′∼P1(· |s,a)

[γV ∗
(s ′)] − Es ′∼P1(· |s,a)

[γV ∗
1

(s ′)]|︸ ︷︷ ︸
I I

.

Inequality 2 follows from the triangle inequality. It is easy to get

I I ≤ γ ∥V ∗ −V ∗
1
∥∞. We now derive the bound for I .

I = max

a∈A
|
∑
s ′∈S

(P(s ′ |s,a) − P1(s ′ |s,a))V ∗
(s ′)| · γ

≤
3

max

a∈A
∥P(s ′ |s,a) − P1(s ′ |s,a)∥1 max

s ∈S
V ∗

(s) · γ

≤
4

max

a∈A
2 ·TV (P(·|s,a),P1(·|s,a)) · max

s ∈S
V ∗

(s) · γ

≤
5

max

a∈A
2 ·TV (P(·|s,a),P1(·|s,a)) ·

R

1 − γ
· γ .

Inequality 3 follows from Hölder’s inequality. Let S0 ≜ {s ′ ∈

S : P(s ′ |s,a) ≥ P1(s ′ |s,a)}. We have ∥P(s ′ |s,a) − P1(s ′ |s,a)∥1 =∑
s ′∈S0

(P(s ′ |s,a)−P1(s ′ |s,a))+

∑
s ′∈S\S0

(P1(s ′ |s,a)−P(s ′ |s,a)) =

2P(S0 |s,a) − 2P1(S0 |s,a) ≤ 2 · TV (P(·|s,a),P1(·|s,a)). There-

fore, inequality 4 holds. Recall V (s) ≜ E[

∑
t ≥0 γ

tR(st ,at)] ≤

E[

∑
t ≥0 γ

tR] ≤ R
1−γ . Hence, inequality 5 holds. With all these

combined, we have the following

∥V ∗−V ∗
1
∥∞ = max

s ∈S

��V ∗
(s) −V ∗

1
(s)

��
≤ max

a∈A,s ∈S
2·TV (P(·|s,a),P1(·|s,a)) ·

R

1 − γ
· γ + ∥V ∗ −V ∗

1
∥∞ · γ .

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

481

Reorganizing the last inequality, we have: ∥V ∗ − V ∗
1
∥∞ ≤

2γR
(1−γ)

2
maxs ∈S,a∈A TV (P(·|s,a),P1(·|s,a)). Recall that P and P1

are Lϵ approximate. Therefore, together with inequality 3, we have

I ≤
3

max

a∈A
∥P(s ′ |s,a) − P1(s ′ |s,a)∥1 max

s ∈S
V ∗

(s) · γ

≤ Lϵ ·
R

1 − γ
· γ .

With I I combined, we have ∥V ∗−V ∗
1
∥∞ ≤

γRL
(1−γ)

2
ϵ , which completes

the first part of proof.��V ∗
(s) −V ∗

2
(s)

��
= |B ◦V ∗

(s) − B ◦V ∗
2

(s)|

≤
6

max

a∈A
|Es ′∼P(· |s,a)

[γV ∗
(s ′)] − Es ′∼P2(· |s,a)

[γV ∗
2

(s ′)]|

+ max

a∈A
|R(s,a) − R2(s,a)|

≤ max

a∈A
|Es ′∼P(· |s,a)

[γV ∗
(s ′)] − Es ′∼P2(· |s,a)

[γV ∗
2

(s ′)]| + lϵ .

Suppose â ≜ arg maxa∈A R(s,a), and â2 ≜ arg maxa∈A R2(s,a).

If maxa∈A R(s,a) ≥ maxa∈A R2(s,a), |maxa∈A R(s,a) −

maxa∈A R2(s,a)| ≤ R(s, â) − R2(s, â); otherwise,

|maxa∈A R(s,a) − maxa∈A R2(s,a)| ≤ R(s, â2) − R2(s, â2).

In both cases, |maxa∈A R(s,a) − maxa∈A R2(s,a)| ≤

maxa∈A |R(s,a) − R2(s,a)|. Together with inequality 1 and

triangle inequality, inequality 6 holds. The rest is the same as the

first part of theorem. □

8.2 Proof of Theorem 2
Proof. Letψ be any path of states starting from s under policy

π∗ of length T , i.e.,ψ = (s
ψ
0

= s, s
ψ
1
, s
ψ
2
, ..., s

ψ
T−1

). Let Ψ be the set

of all possible such kind of paths. Further, we define V π
∗

(ψ) =∑T−1

t=0
γ tR(s

ψ
t ,π

∗
(s
ψ
t)), and Pπ

∗

[ψ] =

∏T−2

t=0
P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)).

V π
∗

(ψ) is the total discounted reward the agent could receive along

pathψ under policy π∗ in M, and Pπ
∗

[ψ] is the probability of the

agent taking pathψ under policy π∗ inM. Analogously, we have

V π
∗

i (ψ) and Pπ
∗

i [ψ].

The proof is a modification of Lemma 4 in [10]. According to

the definition of T -step value function under policy π∗, we know

Vπ ∗

(s,T) =

∑
ψ ∈Ψ
Pπ

∗

[ψ]V π
∗

(ψ). We define the set of all θ -small

paths, Ψ1 = {ψ ∈ Ψ : ∃t ,P(s
ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)) ≤ θ }. Naturally, the set

of paths where all transition probabilities under π∗ is larger than θ

is Ψ2 = Ψ \Ψ1. Thus, we haveV
π ∗

(s,T) =

∑
ψ ∈Ψ1

Pπ
∗

[ψ]V π
∗

(ψ) +∑
ψ ∈Ψ2

Pπ
∗

[ψ]V π
∗

(ψ).

We have |Pi (s
ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)) − P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t))| ≤ δ , follow-

ing from the continuity assumption. For any path ψ ∈ Ψ2, for all

0 ≤ t ≤ T − 2, it is not difficult to see P(s
ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)) +

δ
θ θ ≤

P(s
ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t))+

δ
θ P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)), andP(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t))−

δ
θ θ ≥ P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)) − δ

θ P(s
ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)). Therefore, we

have

(1 −
δ

θ
)P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)) ≤ Pi (s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t))

≤ (1 +

δ

θ
)P(s

ψ
t+1

|s
ψ
t ,π

∗
(s
ψ
t)).

Furthermore, we can derive that for anyψ ∈ Ψ2, (1− δ
θ)

TPπ
∗

[ψ] ≤

Pπ
∗

i [ψ] ≤ (1 +
δ
θ)

TPπ
∗

[ψ].

Now let us study the property of path ψ ∈ Ψ1.∑
ψ ∈Ψ1

Pπ
∗

i [ψ]V π
∗

(ψ) is upper bounded by θ · |S| · TGT

and

∑
ψ ∈Ψ1

Pπ
∗

[ψ]V π
∗

i (ψ) is upper bounded by (θ + δ) · |S| · TGT .

Thus, we have |
∑
ψ ∈Ψ1

Pπ
∗

i [ψ]V π
∗

i (ψ) −
∑
ψ ∈Ψ1

Pπ
∗

[ψ]V π
∗

(ψ)| ≤

(δ + 2θ)|S|TGT .

For any pathψ , |V π
∗

(ψ)−V π
∗

i (ψ)| ≤ Tδ . With Ψ1 and Ψ2 combined,

we have

Vπ ∗

i (s,T) ≜
∑
ψ ∈Ψ1

Pπ
∗

i [ψ]V π
∗

i (ψ) +

∑
ψ ∈Ψ2

Pπ
∗

i [ψ]V π
∗

i (ψ)

≤ {
∑
ψ ∈Ψ1

Pπ
∗

[ψ]V π
∗

(ψ) + (δ + 2θ)|S|TGT } +

∑
ψ ∈Ψ2

Pπ
∗

i [ψ]V π
∗

i (ψ)

≤ {V π
∗

Ψ1

(s,T) + (δ + 2θ)|S|TGT } +

∑
ψ ∈Ψ2

(1 +

δ

θ
)
TPπ

∗

[ψ](V π
∗

(ψ) + Tδ)

≤ (1 +

δ

θ
)
T

(V π
∗

Ψ1

(s,T) +V π
∗

Ψ2

+ Tδ) + (δ + 2θ)|S|TGT

≤ (1 +

δ

θ
)
T

(Vπ ∗

(s,T) + Tδ) + (δ + 2θ)|S|TGT .

Similarly, we could also get inequality in the other direction

Vπ ∗

i (s,T) ≥ (1 − δ
θ)

T
(Vπ ∗

(s,T)) − (δ + 2θ)|S|TGT . Here,

V π
∗

Ψ1

(s,T) and V π
∗

Ψ2

(s,T) denote the part of T -step value function

which only include paths in Ψ1 and Ψ2, respectively.

Let us set θ to be

√
δ . Note that we could assume δ ≤ 1 without

loss of generality since we could always rescale the reward function

to [0, 1]. For some ω ≥ 0, if δ ≤ (
ω

12 |S |TGT
)
2
, (1 +

δ
θ)

TVπ ∗

(s,T) is

no greater than
ω
8

+ Vπ ∗

(s,T), and (1 +
δ
θ)

TTδ ≤ ω
8
. Combined

with (δ +2θ)|S|TGT ≤ ω
4
, we could get |Vπ ∗

(s,T)−Vπ ∗

i (s,T)| ≤

ω, where i ∈ {1, 2}, independent of s ∈ S. □

8.3 Lemma 3
Lemma 3. Let the state and state-action value be V (s) and Q(s,a)

respectively, and let the observed state with higher variance ofQ value
be state st1

and the observed state with smaller variance of Q value
be st2

. The variance is taken over different actions. Let π denote the
current policy. Then, we have the following

Eπ [

T∑
t=0

γ t rt |do(st1
= ŝt1

)] ≤ Eπ [

T∑
t=0

γ t rt |do(st2
= ŝt2

)],

where do(st1
= s̃t1

) means the observed state at time step t1 is per-
turbed from st1

to s̃t1
by using the adversarial perturbation, and

do(st2
= s̃t2

) means that the observed state at time step t2 is changed
from st2

to s̃t2
by utilizing the adversarial perturbation.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

482

	Abstract
	1 Introduction
	2 Preliminary
	3 Adversarial attack against DRL interpretations
	3.1 Threat Model
	3.2 Formalization of Universal Adversarial Attack
	3.3 Optimization
	3.4 Theoretical Analysis

	4 Model poisoning attack against DRL interpretations
	4.1 Threat Model
	4.2 Formalization of Model Poisoning Attack

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments for Adversarial Attack
	5.3 Experiments for Model Poisoning Attack

	6 Related Work
	7 Conclusions
	References
	8 Appendix
	8.1 Proof of Theorem 1
	8.2 Proof of Theorem 2
	8.3 Lemma 3

