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Abstract. In this paper, we propose differentially private protocols for
Naive Bayes classification over distributed data. Compared with existing
works, the privacy and security models in the proposed protocols are
stronger: firstly, both the miner and parties can be arbitrarily malicious
and can collude with each other to violate the remaining honest par-
ties privacy; secondly, all communication channels between them can be
assumed to be insecure. Specifically, we build a guarantee of differential
privacy into the cryptographic construction so that the proposed proto-
cols can tolerate collusions and resist eavesdropping attacks which are
caused by insecure communication channels. Additionally, the proposed
protocols can be implemented at lower computation and communica-
tion costs, and some extensions to our protocols (e.g. supporting parties
dynamic joins or leaves) are also proposed in this paper. Both theo-
retical analysis and simulation results show that the proposed privacy-
preserving protocols for Naive Bayes have strong security and better
classification performance than the standard one.

Keywords: Distributed data mining · Naive Bayes · Differential
privacy

1 Introduction

As a means of delivering valuable information, data mining has drawn more and
more attention.The traditional datamining technology is based on the assumption
that the miner can completely access to the data. But currently, it is common that
data are distributed among various parties, who don’t want to disclose their data
due to privacy concerns. So the challenge here is how to accurately mine valuable
knowledge from distributed data while effectively guaranteeing parties’ privacy,
especially when considering the miner or some parties are malicious.

In this paper, we focus on the distributed privacy-preserving of Naive Bayes
(NB) learning, of which one of the most commonly used classifiers in the data-
mining field. NB is based on statistic analysis and in distributed scenarios, the
statistic queries over distributed parties are needed to obtain NB classifiers.
However, the accurate query results always disclose private information of parties
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when deriving NB model parameters [1]. To protect the privacy of sensitive
information, each party can add noises to their data so that the miner will derive
noisy statistic results. Meanwhile, we should achieve two goals: providing useful
results and preserving each party’s privacy. Additionally, we can not ignore that
some participating parties may be compromised and collude with the miner to
infer others’ sensitive information. Also, another point we need to note is insecure
communication channels make their messages suffer from eavesdropping attacks.

To tackle the privacy concerns in distributed NB learning, various schemes
have been proposed [4,6,10,12,14]. However, they either need to be implemented
with high cost [4,6,10,14], or are easily subject to collusion attacks [4,12]. Also,
the centralized private NB scheme [11] allows one party to add noises to data
based on the standard differential privacy, achieving a good compromise between
privacy and utility. However, their differential privacy mechanisms are not suit-
able for the distributed data-mining environment. This is because, too much
accumulated error can be incurred from the distributed parties, and this will
terribly affect the utility of NB classifiers learned from the distributed sceneries.

Given that, we propose the novel privacy-preserving NB protocols in this
paper, and these protocols can deal with above situations with low computation
and communication cost. In our protocols, we employ distributed differential
privacy, a relaxation of differential privacy, which makes sense especially in dis-
tributed scenarios because it can provide rigorous privacy assurance and good
utility. In our proposed protocols, distributed differential privacy not only lets
the miner derive useful noisy results, but also guarantees the parties’ data pri-
vacy even when some compromised parties collude with the untrusted miner by
revealing their data and noises.

Although distributed differential privacy can preserve those honest parties’
privacy, the magnitude of the noise generated by a specific party is not enough
to ensure his data privacy since communication channels are insecure. So, we
combine cryptography techniques with differential privacy to provide more secure
guarantees, such that only negligible information of each party can be leaked even
if the miner has arbitrary auxiliary information, which can be obtained in various
ways (e.g. colluding with compromised parties). Specifically, each party firstly
adds an appropriate noise to his data, and then encrypts the noisy data based
on the encryption technology. At last, each party sends the encrypted noisy data
to the miner who can decrypt the noisy results without learning anything else.

Additionally, parties’ dynamic joins and leaves in distributed scenarios are
well dealt with in our protocols. Another characteristic of our protocols is that
they can support the incremental NB learning.

To sum up, our contributions in this paper are: firstly, we propose two dis-
tributed privacy-preserving NB protocols in the distributed environment where
data is either horizontally or vertically partitioned, and the two protocols effec-
tively resist both collusion and eavesdropping attacks; Secondly, compared with
existing works, the proposed NB protocols can be implemented with lower com-
putation and communication cost while ensuring only the miner having specific
capability can get final NB classifiers. Thirdly, we extend them to make them
more applicable in reality, such as supporting parties’ dynamic joins or leaves.
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2 Related Work

In the past, various privacy-preserving mechanisms for NB have been proposed.
Using the rigorous privacy model of differential privacy, Vaidya et al. [11] con-
struct a privacy-preserving NB classifier, in which the privacy model is that a
data owner having centralized access to a dataset would like to release a NB clas-
sifier while preserving parties’ data privacy. However, the centralized methods
are not suitable to the distributed dataset.

Kantarcioglu et al. [4] in 2003 propose a private NB protocol for only hori-
zontally partitioned data. One constrain in [4] is that they assume there are no
collusion among all sites. Besides, their protocols transmit messages in a plain
form, making those messages vulnerable to eavesdropping attacks. Yang et al.
[14] in 2005 similarly propose a NB protocol over an horizontally distributed
database, which is only suitable to a special scenario where each party just
holds one instance. Using paillier cryptosystem, the authors in [12] also propose
a horizontally private NB protocol, where the number of decryptions is at least
min(log2 N1, log2 N2)/ log2 (nF) and there is no collusion between two parties.

The authors in [6] propose a private NB protocol over vertically distributed
data streams using the secure multi-party computation, inevitably leading to
high complexity. In [10], the authors present private NB protocols on both ver-
tically and horizontally partitioned data, which cannot resist collusion attacks.

In 2005, Zhang et al. [13] combine data transform with data hiding to propose
a new randomization method, to distort original data. Then, an effective NB
classifier is presented to predict the class labels for unknown samples according
to the distorted data. Yet, arbitrary randomization is not safe [5]. Compared
with their methods, the differential privacy mechanisms used in our protocols can
not only give rigorous mathematical proof but also provide good reconciliation
between utility and privacy.

Motivated by those, we propose the novel privacy-preserving NB protocols.
Firstly, the protocols need not any interaction among parties, which largely saves
the system cost. Secondly, they can well deal with the scenarios where the miner
colludes with parties and communication channels are insecure. Thirdly, they
can be implemented with lower computation and communication cost.

3 System Model

3.1 System Setting

Here we consider the horizontally distributed scenarios, while leaving the verti-
cally scenarios to section 5.4. We assume that there are a data miner, N samples
and n parties and each party Pk (k ∈ [n]) has a local dataset.

Let x = (a1, ..., am) be a vector of observed random variables with no class
label, where each feature ai takes values from its domain Ai, i.e., ai ∈ Ai. The
set of all feature vectors is denoted as Ω = A1 × ... × Am. The NB classi-
fier will predict that x belongs to the class cj (taken from {c1, ..., cr}) which
has the highest posterior probability, conditioned on x. The NB classifier can
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be defined as follows: NB(x) = argmaxcjP (X = x|C = cj)P (C = cj) =
argmaxcjP (cj)

∏m
i=1 P (ai|cj), where P (cj) represents the class prior probability

and P (ai|cj) represents the posterior probability.
By simply counting the frequency from the horizontally partitioned dataset,

p(ai|cj) is calculated as p(ai|cj) = nij

nj
=
∑n

k=1 nk
ij∑n

k=1 nk
j

and p(cj) is calculated as

p(cj) = nj

N =
∑n

k=1 nk
j

N , where nj is the whole number of training samples whose
class labels are cj , and nij is the number of these training examples which also
have ai. And, nk

j and nk
ij denote the corresponding local counts. Get here, the

goal we want to achieve here is how to let the miner get
∑n

k=1 nk
j and

∑n
k=1 nk

ij

over n parties, while ensuring parties’ privacy.

3.2 Attack Model

In our model, both parties and the miner can be arbitrarily malicious. We assume
that the fraction of those uncompromised parties is γ, which can be estimated
from priori knowledge, and the reminding compromised parties can collude with
the miner to break honest parties’ privacy. Besides, communication channels
between them are assumed to be insecure, making parties’ messages subject to
eavesdropping attacks.

3.3 Designing Goals

1. Utility and Privacy Guarantee. In horizontally distributed environment,
we should compute the sum statistic over n parties to get NB model parame-
ters. Yet, accurate queries can violate parties’ privacy [1]. So, each party can
add an appropriate noise to his data to protect the data privacy. Meanwhile,
two objectives should be compromised: preserving privacy and ensuring good
utility, which can be achieved by differential privacy [1]. But, standard differ-
ential privacy let each party generate a noise to protect his privacy, making
an O(n) accumulated error (the difference with the accurate sum result).
Instead, we resort to distributed differential privacy [9], allowing n parties
collectively add only a geometric noise to each summation result.
Also, the distributed differential privacy used in our protocols is collusion-
tolerant, which means the privacy of trusted parties can be well protected
even if the compromised parties collude with the miner.

2. Security Guarantee. Note that using distributed differential privacy, the
accumulated error in the sum statistics is only an copy geometric noise, but
the magnitude of the noise incorporated to each party’ data is not large
enough to protect the data privacy. So, the security of data can be vio-
lated if only based on the distributed differential privacy since communi-
cation channels make parties’ data suffer from eavesdropping attacks. We
can improve this by incorporating cryptographic techniques. Given this, we
design a (ε, δ)-differential privacy mechanism combining with the crypto-
graphic construction to provide both security and privacy guarantee. The
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main security goal in our NB protocols is to ensure that the miner learns
only the final summation results, and nothing else about parties’ private
data.

3. Additional Guarantee. The computation and communication cost should
be low since parties’ resources are usually limited in reality. Also, distributed
parties’ dynamic leaves and joins need also to be considered. And, some other
situations, such as data pollution should also be considered.

4 Basic Protocol Blocks

4.1 Protocol Sketch

Here, we give a high level description of the proposed horizontally differential
private NB protocol (HDPNB). As previously mentioned, two techniques, i.e.,
differential privacy and applied cryptography methods, are used in HDPNB to
provide privacy and security guarantee.

Firstly, each party independently adds an appropriate noise to his data using
the data perturbation scheme mentioned below, then encrypts his noisy data
using the corresponding encryption scheme and at last sends the encrypted noisy
data to the miner who can decrypt summation statistics queries (

∑n
k=1 nk

ij and
∑n

k=1 nk
j ), and then privately get NB model parameters. Note that all parties

collectively add a geometric noise (required for differential privacy) to every
summation query count, i.e.,

∑n
k=1 nk

ij and
∑n

k=1 nk
j . The data perturbation

and encryption schemes are present below.

4.2 The Naive Data Perturbation Scheme

The standard differential privacy, which can provide information-theoretic pri-
vacy guarantees that hold against computationally unbounded adversaries and
balance the tradeoff between privacy protection and utility loss, allows each dis-
tributed party in our HDPNB to incorporate a Laplace noise into their local
data, coursing O(n) accumulated error [1].

Definition 1. Differential Privacy. A randomized function K gives ε-
differential privacy (ε is the privacy parameter) if for all neighborhood dataset
D1 and D2 differing in at most one record, and all S ∈ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) ∗ Pr[K(D2) ∈ S] (1)

So, for HDPNB, to get strong privacy protection and good utility, we instead
use the distributed differential privacy [9] to let the parties be responsible for
ensuring the differential privacy of their own data, and this incurs only O(1)
accumulated error. Based on distributed differential privacy, Shi et al. [9] propose
a data perturbation scheme, where each party Pk (k ∈ [n]) generates an additive
noise rk (rk ∈ Zp) following β-diluted geometric distribution to his data xk

(xk ∈ Zp). As a consequence, roughly one copy of geometric noise Geom(α) is
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added to the original summation
∑n

k=1 xk, which is the minimum amount of
noise required to ensure ε-differential privacy [2]. And, they in [9] present below
theorem 1 to show that the naive data perturbation scheme is computationally
differentially private [8].

Definition 2. Geometric Distribution. Let α > 1. Geom(α) denotes the sym-
metric geometric distribution with parameter α. Its probability mass function at
k (k = 0,±1,±2, ...) is α−1

α+1 · α−|k|.

Definition 3. β-Diluted Geometric Distribution. Let α = exp( ε
Δ ) (α > 1) and

β = min( 1
γn log 1

δ , 1) (0 < β ≤ 1). A random variable follows β-diluted Geometric
distribution Geom(α)β if it is sampled from Geom(α) with probability β, and is
set to 0 with probability (1 − β). ε and δ are privacy parameters, and Δ is
sensitivity.

Theorem 1. Let 0 < δ < 1, ε > 0, α = exp( ε
Δ ) and β = min( 1

γn log 1
δ , 1), where

γ is the fraction of honest parties. If each party adds a noise Geom(α)β, the above
naive perturbation scheme achieves (ε,Δ)-distributed differential privacy.

We here use this naive scheme to perturb both
∑n

k=1 nk
ij and

∑n
k=1 nk

j to
protect parties’ privacy, since accurate results always disclose privacy [1]. Yet,
this naive scheme can not support parties’ dynamic joins and leaves, which is
solved next at only O(1) error and low cost.

4.3 The Improved Data Perturbation Scheme

In the naive data perturbation scheme, each party utilizes the number of parties
n to set parameter β = min( 1

γn log 1
δ , 1) (parameters γ and δ are constant), such

that all parties collectively add just one geometric noise to final results. But it
requires large communication cost for each party join and leave since the exact
value of n needs to be sent to the parties. Obviously, it conflicts with the lower
communication cost goal.

Considering this, we give Alg.1, which relax the accuracy requirement on the
value of n such that n does not have to be updated for every party’ join and
leave and only incurs low error and cost. Each party uses u rather than n to set
parameter β. u is updated appropriately when some parties join or leave, but
may not always reflect the real number of parties.

Theorem 2. The average computation error of Alg.1 is roughly within twice of
the geometric noise, required for differential privacy.

Proof. Here, we first prove that ∀k, uk ∈ (n
2 , n]. Clearly, in the initial phase,

we always have ∀k, uk ∈ (n
2 , n]. Suppose that all party’s uk initially are set

as �n
2 � + 1, �n

2 � + 1, �n
2 � + 2, ..., n, n, i.e., n is even. After a party’s join, the

pattern becomes �n
2 � + 1, �n

2 � + 2, �n
2 � + 2, ..., n + 1, n + 1 and the number of

parties now becomes n+1 (odd), making that �n
2 � = �n+1

2 �. So, in this case, we
have ∀k, uk ∈ (n

2 , n]. Similarly, when a party leaves, that ∀k, uk ∈ (n
2 , n] also is
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Algorithm 1. Procedures run by the trusted dealer to manage the values of u

Require: n : the real number of party
Require: uk : the number of party that party Pk uses to set parameter β
1: Initialization:
2: if n is even then
3: u1, u2, ..., un ← �n

2
� + 1, �n

2
� + 1, �n

2
� + 2, �n

2
� + 2, ..., n, n;

4: else
5: u1, u2, ..., un ← �n

2
� + 1, �n

2
� + 2, �n

2
� + 2, ..., n, n;

6: end if
7:
8: Join:
9: if Party Pk joins then

10: n ← n + 1;
11: uk ← n;
12: Find a party j with uj = min {u1, u2, ..., un};
13: uj ← n;
14: end if
15:
16: Leave:
17: if Party Pk leaves then
18: n ← n − 1;
19: Find a party Pj with uj = max {u1, u2, ..., un};
20: if There exists another party Pm with um = uj then
21: um ← uk;
22: uj ← �n

2
� + 1;

23: end if
24: end if

true. In other two situations where a parties leaves or joins when n is odd, that
∀k, uk ∈ (n

2 , n] also holds, of which the analysis is leaved to the full paper. In all
those four cases, the condition that ∀k, uk ∈ (n

2 , n] always holds. When u ≤ n,
at least one copy of geometric noise is added to ensure differential privacy; when
u > n

2 , at most one more copy of geometric noise is added. Here, this theorem
is proved.

4.4 The Improved Encryption Scheme

The authors in [9] propose an aggregation encryption scheme, which doesn’t
require parties’ interactions, keeps parties’ secret keys (H(t)ski and H denotes
a hash function) fresh, and can achieve strong security guarantees.

Yet, this naive encryption scheme [9] leaves one open problem. To compute
the aggregation value X =

∑n
k=1 xk (xk denotes parties’ private data), the

miner has to compute the discrete log, making their cryptographic construction
not support large plaintext spaces. At small plaintext spaces, decryption can
be achieved through a brute-force search. Even using Pollard’s lambda method,
decryption time is roughly square root in the plaintext space. Additionally, this
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scheme is not failure-tolerant and can’t support parties’ dynamic joins and leaves,
both of which are solved in our methods.

Instead, we propose a computational efficient method, allowing the miner
to directly and efficiently get the final results. Specifically, we use the modular
property (1 + p)m = 1 + mp mod p2 to improve the encryption scheme in [9].

Based on the above equation, we get that
∏n

k=1(1+p)xk =
∏n

k=1(1+p ·xk) =
(1 + p

∑n
k=1 xk) mod p2 (xk ∈ Zp). With the above property, the decryption

time is only O(1). The improved scheme, used in HDPNB, has three steps:

– Setup(n,λ): This step, run by a trusted dealer, takes the number of parties
n, and a security parameter λ as inputs. It outputs: (params, sk0, {skk}k∈[n]),
where params are system parameters. sk0 is distributed to the miner and skk

(k ∈ [n]) is a secret key distributed to the party Pk(k ∈ [n]), such that sk0 +
sk1+ ...+skn = 0. The parties will use their secret keys to encrypt their data,
and the miner will use its sk0 to decrypt the sum. The setup algorithm only
need to be performed once during the whole learning procedure.

– Encrypt(skk, xk, t): At time t, each Pk first calculates (1+xk · p) mod p2.
Then the party multiplies it by secret parameter H(t)skk to get: Ck = (1 +
xk · p) · H(t)skk mod p2. Then, he uploads the ciphertext Ck to the miner.

– Decrypt(sk0, {Ck}k∈[n], t): After receiving {Ck}k∈[n] from all parties, the
miner calculates: C = H(t)sk0 ·∏n

k=1 Ck = H(t)sk0 ·∏n
k=1(1+xk·p)·H(t)skk =

(1+ p
∑n

k=1 xk) mod p2. Then, the miner only needs to calculate (C − 1)/p
mod p =

∑n
i=1 xk mod p to decrypt the summation

∑n
i=1 xk (xk ∈ Zp).

Two different modular operations used here don’t affect the decryption [3].

The decryption time in our proposed method is only O(1), while that in the
naive encryption scheme [9] is at least O(

√
nΔ), only when the plaintext space

is small. For the large plaintext space, the decryption time will be inconceivable.

Updating Secrets. In the above encryption scheme, when a party joins or
leaves, all parties’ encryption keys need to be updated, resulting high commu-
nication cost in a large system. We address this by employing the interleaved
grouping technique, behind which the key idea is to divide the parties into inter-
leaved groups, where each group shares some parties with other groups. Owe to
the space restriction, its detailed introduction is omitted here.

5 The Horizontally Differential-private NB Protocol

5.1 Computation of Sensitivity

Before presenting the proposed horizontally privacy-preserving NB protocol,
we firstly analyze the sensitivity Δ. Note that, each party perturbs private
data by adding a noise variable which follows β-diluted Geometric distribution
Geom(α = exp( ε

Δ ))β (parameters ε and β are usually predetermined), where Δ
is the sensitivity of sum with respect to one party’s change. In other words, if a
single participants changes his data, the sum changes by at most Δ. Obviously,
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in our summation situation, the sensitivity is set as Δ = max(N1, N2, ..., Nn).
Remarkably, Δ = max(N1, N2, ..., Nn) can be privately and efficiently computed
using the approaches proposed in [3], where Nk denotes the size of the local
dataset owned by the party Pk (k ∈ [n]), such that N =

∑n
k=1 Nk.

5.2 Protocol Description

HDPNB works as follows:

– Setup. Similar to the improved encryption scheme, each party Pk obtains
the private key skk (skk ∈ Zp), and the miner obtains the capability sk0.

– CountQuery. In this phase, each party Pk locally computes nk
ij and nk

j .
– DataPert. To ensure their differential privacy, each party Pk adds an appro-

priate noise which is produced based on the naive data perturbation scheme
to the original data before encrypting them. We use the notation n̂k

ij and
n̂k

j to denote the noisy plaintext of each party Pk. Note that, honest partic-
ipants will follow this protocol, but compromised participants may not add
noise or even reveal their noise to the miner. The naive data perturbation
scheme ensures that the accumulated noise to nij and nj added by honest
parties is large enough to protect their privacy. In the end, each party Pk

will derive his randomized data n̂k
ij and n̂k

j by the above additive noise.
– DataEnc. Using the improved encryption scheme, each party Pk respec-

tively encrypts the randomized data, i.e., n̂k
ij and n̂k

j . Here, we use n̄k
ij and

n̄k
j to represent the ciphertexts of n̂k

ij and n̂k
j respectively.

– ResultDec.As soon as receiving those encrypted ciphertexts (n̄1
ij , n̄

2
ij , ..., n̄

n
ij)

and (n̄1
j , n̄

2
j , ..., n̄

n
j ) from all parties, the miner then can obtain the summa-

tion plaintexts (n̂ij =
∑n

k=1 n̂k
ij and n̂j =

∑n
k=1 n̂k

j ) by simply summing up
these ciphertexts. That is to say, through the decryption algorithm in the
improved encryption scheme, the miner can obtain the noisy statistic n̂ij =∑n

k=1 n̂k
ij =sum(n̄1

ij , n̄
2
ij , ..., n̄

n
ij) and n̂j =

∑n
k=1 n̂k

j =sum(n̄1
j , n̄

2
j , ..., n̄

n
j ).

Finally, the miner calculates p̂ij = n̂ij/n̂j . The probability pj can also be
calculated as p̂j = n̂j/N .

Note that, n distributed parties collectively add one copy of geometric noise
Geom(α) to

∑n
k=1 n̂k

ij , i.e.,
∑n

k=1 n̂k
ij =

∑n
k=1 nk

ij + r (r is a geometric noise).
The same is to

∑n
k=1 n̂k

j .

5.3 Protocol Privacy and Security Analysis

The theorem 2 indicates that even if the compromised parties collude with the
miner, the noise added by honest parties is large enough to ensure their differ-
ential privacy, i.e., achieving (ε,Δ)-distributed differential privacy, which shows
that HDPNB is collusion-tolerant. The security analysis in [9] shows that the
encryption scheme are secure enough under insecure communication channels to
resist polynomial-time adversaries. To sum up, HDPNB provides differential pri-
vacy guarantee to resist polynomial-time adversaries, as our encryption schemes
is secure enough against polynomial-time adversaries.
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5.4 Extension

Vertically Differential-Private NB. Here, we address vertically differen-
tial private NB classification (VDPNB). Since vertically partitioned data must
have a key attribute at all parties, we assume that each record owned by
each party includes its class attribute value. We suppose the party Pk (k ∈
[n]) just have the k-th attributes Ak. In this way, there are n attribute in
total. A sample x with n possible attributes values a1, ..., an is classified as:
NB(x) = argmaxcj

nj

N

∏n
i=1

nij

nj
, where N is the number of training samples, nj

(nj , nij ∈ Zp) is the total number of training examples whose class label is cj

and nij is the number of those training examples that also have ai. And, N and
nj are publicly known. So, the goal is to privately obtain the product

∏n
i=1 nij

over those n parties, where nij just need to be estimated from one party’s local
data. To ensure differential privacy, each party can himself independently gen-
erate an additive Laplace noise [1] to his nij (the sensitivity Δ is set as 1). To
give more strong security guarantee, we also allow parties to firstly perturb their
data, then encrypt his noisy data and lastly send encrypted ciphertexts to the
miner. The encryption scheme used here is an variant of the naive encryption
scheme used in HDPNB, where each party sends the ciphertext nij · H(t)ski

rather than (1 + nij · p) · H(t)ski to the miner, which can directly decrypt the
product

∏n
i=1 nij .

Dynamic Joins or Leaves. In distributed environment, some parties, who
agree to perform the above NB protocols, may dynamically leave, and new parties
may join, which we address both problems in the improved data perturbation
scheme, i.e., Alg.1.

Others. In reality, some other challenges, including data pollution, fault toler-
ance, malicious modification and the incremental NB learning, also need to be
considered, which we don’t introduce due to the limited space.

6 Performance Analysis

6.1 Complexity Analysis

Here, we discuss the computation and communication complexities in our pro-
tocols. In the horizontal NB protocol, the communications just exist in steps
DataEnc and ResultDec, where each party sends his encrypted ciphertext c
to the miner. Therefore, the total number of bits transferred by each party will
be O(|c|), where |c| represents the total bit length of c. The dominant compu-
tation cost in the step CountQuery is O(l) (l is the number of samples owned
by every party), while the computation cost in other steps is only O(1).

Similarly, the computation and communication cost for each party is O(l)
and O(|c|) respectively, where l is number of whole samples and |c| is the bit
length of transferred ciphertext c in each party side.

The communication cost in Alg.1 is very small: when a party leaves, at most
two remaining parties with the maximum u are updated; when a party joins, the
joining one and another one with the minimum u are updated.
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6.2 Experimental Evaluations

(a) (b)

Fig. 1. Classification accuracy comparison

In this section, we respectively compare the classification performance
between: standard NB (SNB for short) and HDPNB, SNB and VDPNB. Fig.1
shows simulation results on the dataset of Car Evaluation [7]. Fig.1 (a) gives the
classification accuracy comparison between SNB and HDPNB, while Fig.1 (b)
between SNB and VDPNB. For every subfigure in Fig.1, we vary the number of
parties n, and compare their practical utility (i.e., classification accuracy) under
fixed privacy parameters (ε = 0.1, 0.2, 0.3, 0.4 respectively). For each n, we aver-
age and record the ten-fold cross-validation accuracy over 2000 runs, since it
is a randomized algorithm. Specifically, for the proposed HDHNB, we assume
that each party just has one sample, and γ is set to be 1 in Fig.1 (a) (assum-
ing no compromised parties). The simulation results show that both HDPNB
and VDPNB have comparable or even better classification performance when
compared with SNB, especially when the number of samples increases. In addi-
tion, from Fig.1, we can clearly see that the larger ε is, the better classification
performance the two proposed HDPNB and VDPNB have. Thus, the proposed
privacy-preserving NB protocols are practical in reality.

7 Conclusion

This paper presents privacy-preserving protocols for learning NB classifiers over
both horizontally and vertically distributed data. The proposed protocols guar-
antee the privacy of sensitive information even a subset of malicious parties
collude with the untrusted miner, and still ensure the reminding honest parties’
differential privacy while guaranteeing good NB classification performance, and
they are also secure enough under insecure communication channels, while at low
cost. Additionally, we also make some extension to it. The experimental results
show that our protocols are effective to be applicable in practice.
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