
Learning to Learn Task Transformations for Improved Few-Shot Classification

Guangtao Zheng∗ Qiuling Suo† Mengdi Huai‡ Aidong Zhang∗

Abstract

Meta-learning has shown great promise in few-shot image

classification where only a small amount of labeled data is

available in each classification task. Many training tasks are

provided to train a meta-model that can quickly learn new

and similar concepts with few labeled samples. Data aug-

mentation is often used to augment training tasks to avoid

overfitting. However, existing data augmentation methods

are often manually designed and fixed during training, ig-

noring training dynamics and the difference between various

meta-learning settings specified by meta-model architectures

and meta-learning algorithms. To address this problem, we

add a task transformation layer between a training task and

a meta-model such that the right amount of perturbation is

added to training tasks for a certain meta-learning setting

at a certain training stage. By jointly optimizing the task

transformation layer and the meta-model, we avoid the risk

of providing tasks that are either too easy or too difficult

during training. We design the task transformation layer

as a stochastic transformation function, adding the flexibil-

ity in how a training task can be transformed. We leverage

differentiable data augmentations as the building blocks of

the task transformation function for efficient optimization.

Extensive experiments show that our method can consis-

tently improve the few-shot generalization performance of

various meta-models trained with different meta-learning al-

gorithms, meta-model architectures, and datasets.

1 Introduction

Learning new concepts with a small amount of data
is recognized as a hallmark of human intelligence [8].
In contrast, modern deep neural networks typically are
trained with a large amount of labeled data. Meta-
learning, which learns a meta-model that can quickly
generalize to new concepts with a few labeled examples
and adaptation steps, has recently attracted tremen-
dous interest [25, 2, 13, 31, 33]. A widely used test bed
for meta-learning algorithms is few-shot image classifi-
cation where classifications are performed on new image

∗Department of Computer Science, University of Virginia,

USA, {gz5hp,aidong}@virginia.edu
†Department of Computer Science and Engineering, University

at Buffalo, USA, qiulings@buffalo.edu
‡Department of Computer Science, Iowa State University,

USA, mdhuai@iastate.edu

categories after learning a few labeled training examples
for each category.

In few-shot image classification, existing meta-
learning algorithms [25, 2, 13, 31, 33] often adopt data
augmentation methods in their implementations for per-
formance improvement. These methods are often man-
ually designed as a sequence of fixed image transforma-
tion functions, ignoring the training dynamics of meta-
learning. As the training progresses, the meta-model
could gradually memorize the seen tasks. Despite that
a fixed augmentation strategy is applied, the augmented
tasks could be memorized by the meta-model at a cer-
tain training stage, and thus the meta-model lacks the
ability to generalize to new tasks. To tackle this, we
need to provide harder tasks with more perturbations
added to the images than previous ones. However, this
is not possible with fixed augmentation strategies.

Moreover, existing data augmentation methods
are often designed to be agnostic to various meta-
learning settings specified by meta-model architectures
and meta-learning algorithms. Hence, the difference
between various meta-learning settings is ignored, re-
sulting in tasks that are suboptimal for certain meta-
learning settings. For example, if the same augmented
tasks are provided to a deep and shallow meta-models,
the deep one may simply remember the provided tasks,
leading to severe overfitting. Similarly, as will be shown
later, each algorithm also has its own level of task diffi-
culty at which the algorithm is most effective in training
a meta-model that generalizes well to unseen tasks.

To address the above challenges, we aim to con-
struct tasks with task difficulty levels optimized for a
certain meta-learning setting and at each training stage.
Direct optimization of the task construction is infea-
sible in practice since we need to search all possible
combinations of examples in a training set to obtain
optimal tasks. To circumvent this, instead of construct-
ing tasks from scratch, we propose to learn to trans-
form given training tasks to get transformed ones with
optimized task difficulties. From the information the-
oretic perspective [4], the information shared between
the meta-model input and the corresponding output is
reduced when the input goes through additional trans-
formations. By transforming an input task, we con-
trol the amount of information flowing from the input

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

to the output. With less information provided to the
meta-model, it becomes more challenging to learn new
concepts from the input task. Therefore, learning to
transform tasks provides a feasible way to provide tasks
with optimized task difficulties during meta-training.

Inspired by the above idea, we propose to add a
task transformation layer between a training task and
a meta-model. The layer transforms a training task by
applying learnable transformation functions to all the
examples in the task. We design a task transforma-
tion function as a sequence of differentiable image oper-
ations with learnable transformation magnitudes. This
design has two benefits: 1) the image operations, such
as changing brightness and rotating an image, are label-
preserving, and can avoid the change of labels and un-
wanted biases in the transformed task caused by an ar-
bitrary task transformation function which may distort
the semantics of images in the task; 2) differentiable
image operations allow us to back propagate through
meta-learning problems, enabling efficient optimization
of the task transformation functions. To add the flexibil-
ity in how a training task can be transformed, the task
transformation layer is designed as a stochastic function
which follows a learnable distribution containing a set
of transformation functions with learnable probabilities.
During meta-training, the layer is jointly optimized with
the meta-model, allowing the transformed tasks to co-
adapt with the meta-model.

We summarize our contributions as follows:

• We propose a new meta-learning framework with
a task transformation layer that mediates the dis-
crepancy between training tasks and meta-learning
settings specified by meta-model architecture and
meta-learning algorithms, and controls task diffi-
culty in accommodation to training dynamics.

• We design the task transformation layer as a dif-
ferentiable and stochastic function for efficient op-
timization. As a benefit of such design choice, we
get a new metric indicating the overall task diffi-
culty required for training on a specific dataset in
a certain meta-learning setting.

• We show that our method can consistently im-
prove the few-shot generalization performance of
various meta-models trained with different meta-
learning algorithms, meta-model architectures on
two benchmark datasets.

2 Related Work

Meta-learning focuses on adapting a model to an unseen
task with limited data by learning from many training
tasks. Each task is constructed to have a support set

and a query set. The support set is used to simulate the
procedure of adapting a model, and the query set is used
to evaluate the adapted model. The two procedures
are also known as the inner and outer loop of meta-
learning. Existing meta-learning algorithms can be
generally divided into optimization-based and metric-
based algorithms. Optimization-based algorithms [8,
15, 14] use gradient-descent to fine-tune all or part of
model parameters in the inner loop using the support
set data. Metric-based algorithms [28, 26, 23, 13, 19,
2, 31] usually freeze feature extractor layers and only
update the last carefully designed classification head
in the inner loop. Different from existing algorithms,
we propose a new meta-learning framework with a
task transformation layer that mediates the discrepancy
between training tasks and a certain meta-learning
setting during meta-training so that the performance
of existing meta-learning algorithms can be improved.

Many meta-learning algorithms adopt simple data
augmentation on images in meta-training. A recent
work [18] analyzed how support, query, task, and shot
augmentations affect the performance of various meta-
learning algorithms. Then, they proposed a set of man-
ually designed augmentation policies for meta-learning.
However, these policies are manually designed and not
optimized for meta-learning. Instead of focusing on the
input space, some recent works [29, 30] propose feature
mixing and task interpolation to increase the diversity of
tasks and mitigate overfitting for gradient-based meta-
learning. Different from the above methods, we focus
on the mismatch between training tasks and various
meta-learning settings, and address it by introducing
a learnable task transformation layer in existing meta-
learning frameworks. Hence, our method can be used
in various meta-learning settings with different model
architectures and meta-learning algorithms.

Differentiable data augmentation [9, 34, 17] is a
promising approach to automatic data augmentation
[5, 16, 6] which finds augmentation policies without re-
sorting to expert knowledge and has become a promis-
ing paradigm for data augmentation. Differentiable
data augmentation greatly reduces the cost of searching
for optimal data augmentation policies by constructing
data augmentation policies with differentiable image op-
erations, making the search differentiable. Our method
uses differentiable image operations as the building
blocks of the task transformation layer. Instead of creat-
ing diverse data samples, our goal of using differentiable
image operations is to efficiently optimize task difficulty
without distorting the semantics of images in a task.
Moreover, automatic data augmentation methods often
rely on constructing an adversarial loss [34] or an extra
reward signal [5] to learn augmentation policies, while

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

our method does not have this limitation thanks to the
bi-level learning structure of meta-learning.

3 Preliminaries

The goal of meta-learning is to learn a meta-model
that can quickly generalize to unseen but related tasks
with only a handful of labeled examples per task. The
meta-model is meta-trained on a sequence of training
tasks under a meta-learning algorithm. A meta-learning
algorithm E can be specified by the inner loop learning
algorithm A and the outer loop learning algorithm B,
i.e., E = {A,B}. A typical meta-learning setting can be
specified with the meta-learning algorithm E and the
meta-model fθ parameterized by θ. The meta-learning
framework under this setting is formulated as:

fθ∗ = B
(
ET ∼p(T)L(T)

)
(3.1)

s.t. L(T) =
1

nQ

∑
(x,y)∈Q

ℓ(fθ̂(x), y),(3.2)

fθ̂ = A(fθ,S),(3.3)

where T = {S,Q} is a training task and consists
of a support set S = {(xi, yi)}nS

i=1 and a query set
Q = {(xj , yj)}

nQ

j=1 containing nS and nQ sample-label
pairs, respectively; A is the inner loop algorithm, which
fine-tunes the meta-model fθ with the training data
in S from task T , and outputs the adapted model
fθ̂ = A(fθ,S); and B is the outer loop algorithm
that outputs an optimized meta-model fθ∗ considering
all the training tasks from the task distribution p(T).
Typically, p(T) describes the distribution of training
tasks that are constructed randomly from a training
dataset. To construct an N -way K-shot task, we first
randomly sample N image categories from the training
dataset, and then randomly sample K images for each
of the N categories for the support set S. For the query
set Q, we sample Kq images for each category so that
nQ = N · Kq. The task loss L(T) is calculated on the
query set Q with the adapted model fθ̂ and the cross-
entropy loss function ℓ(·, ·).

The above formulation subsumes a wide range of
meta-learning algorithms. For gradient-based algo-
rithms, both A and B are certain kinds of optimizers.
For example, in MAML [8], A and B are designed as a
stochastic gradient descent optimizer and an Adam op-
timizer [11], respectively. For metric-based algorithms,
B is commonly designed as an optimizer, such as SGD
with momentum [27], and A is designed as a classifica-
tion method with a certain metric, such as ridge regres-
sion in R2D2 [2], and an SVM classifier in MetaOpt-
Net [13]. Hence, our analysis based on the general
meta-learning framework can be applied to many meta-

learning algorithms that follow this framework.
Problem definition. From Eq. (3.1) to Eq. (3.3),

we observe that under a given meta-learning setting
specified by the meta-learning algorithm E and the
meta-model fθ with a certain architecture, the only fac-
tor that affects the performance of the optimized meta-
model fθ∗ is the task distribution p(T). In practice,
tasks are randomly sampled from the training set for
different meta-learning settings, and p(T) represents the
random task distribution. However, this ignores the dif-
ference between various meta-learning settings as they
require different levels of task difficulties. Moreover,
the training dynamics is also not considered when the
meta-model parameter θ is continuously updated dur-
ing training with a fixed p(T). To achieve improved few-
shot performance under a specific meta-learning setting,
it is critical to construct tasks with optimized task dif-
ficulties that fit specific meta-learning algorithms and
meta-models during training.

4 Methodology

To address the mismatch between p(T), E , and fθ,
an ideal approach is to learn to construct tasks with
optimized task difficulties for the considered meta-
learning setting. However, this approach is challenging
in practice since we need to search combinatorially in
the whole training dataset which is typically large. To
circumvent this, we propose to dynamically control task
difficulty by introducing a learnable task transformation
layer which can be jointly optimized with the meta-
model during training.

4.1 Task Transformation Layer We add a task
transformation layer between an input task and a meta-
model to control the task difficulty. The layer perturbs
the task with learnable transformation functions to op-
timize the task difficulty at a certain training stage in
a certain meta-learning setting. Based on the data pro-
cessing theorem from information theory [4], additional
transformations to the input reduce the information
shared between the meta-model input and the corre-
sponding output. Therefore, we optimize a task diffi-
culty by controlling the amount of information flowing
from the input to the output via transforming an in-
put task. With less information provided to the meta-
model, it becomes more challenging to learn new con-
cepts from the input task.

To add the flexibility in how a task can be trans-
formed by the task transformation layer, we design the
layer as a stochastic function which samples a task
transformation function τ for each task from the dis-
tribution pτ (τ ;ω) parameterized by ω. Intuitively, us-
ing multiple task transformations at a time can cre-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

ate many diverse distributions to increase the chance
of producing p̃(T ′) optimal for a given meta-learning
setting. The goal of the layer is to transform a pop-
ulation of training tasks such that they follow a task
distribution p̃(T ′) optimized at a certain training stage
in a specific meta-learning setting. In practice, since
p̃(T ′) =

∫
τ,T p(T ′|T , τ)pτ (τ ;ω)p(T), the task transfor-

mation layer first samples a τ from pτ (τ ;ω) and then
transforms a training task T from p(T) via p(T ′|T , τ).
We design p(T ′|T , τ) to be a distribution over T ′ cal-
culated as follows,

T ′ = τ(T) = {x′|x′ = τ(x), x ∈ T },(4.4)

where x′ and x have the same dimension, and the
sampled task transformation τ is either a deterministic
mapping or a stochastic one. In other words, T ′ is
obtained by transforming all the samples in task T with
the same function τ . Although τ is applied sample-wise,
we still recognize it as a task transformation function
since it is learned from a population of training tasks.
In practice, our design enjoys fast convergence and small
memory consumption. In addition to the above method,
we could transform all the samples in a task with a single
transformation, transform each sample in a task with an
individual transformation, or other methods in between.
We leave more sophisticated designs of transforming a
task as our future work.

4.2 Task Transformation Functions The task
transformation function τ used by the task transforma-
tion layer needs to satisfy certain constraints. With an
arbitrary τ , the semantics of images in a task may be
distorted, leading to change of labels and unwanted bi-
ases in the transformed task. We also require τ sampled
from pτ (τ ;ω) to be differentiable so that ω can be di-
rectly optimized. Inspired from differentiable data aug-
mentation [9], we design a task transformation function
as a sequence of differentiable and label-preserving im-
age operations, such as changing brightness and rotating
an image, with learnable transformation magnitudes.

Specifically, given L as the length of a task transfor-
mation τ , we have τ(·) = OL◦· · ·◦O1(·), where ◦ denotes
function composition, and O1, . . . , OL are differentiable
image operations. We denote each image operation as
O(·) = g(·;m), where g ∈ G is an image operation in
the set of candidate image operations G, m ∈ M is a
learnable transformation magnitude for g, and M is the
set of all possible magnitudes. In general, each image
operation has its own range of transformation magni-
tude. For example, a rotation operation has the mag-
nitude in degrees ranging from −180◦ to 180◦, while a
contrast operation has the magnitude in pixel intensity
ranging from 0 to 1. We normalize these magnitudes

in different ranges to the same interval to stabilize the
learning of task transformations. We set M = [0, 1]
such that given m ∈ M, for a function g with the trans-
formation range [mg

min,m
g
max], the actual magnitude is

m ·(mg
max−mg

min)+mg
min. In other words, when m = 0,

g(x;m) gives the original input x; when m = 1, g(x;m)
gives the most transformed image. For example, O(·)
could be a rotate-90◦ operation with g being the rotate
function and m = 0.75 (m ∈ [0, 1] corresponds to a
degree in [−180◦, 180◦]).

4.3 Sampling Strategy The task transformation
layer samples a task transformation function τ from
the distribution pτ (τ ;ω) which can be factored as the
product of L conditional probability distributions, i.e.,

pτ (τ ;ω) =

L∏
l=1

p(Ol|O1, . . . , Ol−1),(4.5)

where L is a hyperparameter denoting the length of τ ,
and each conditional distribution p(Ol|O1, . . . , Ol−1) is
supported on |G| operations with learnable magnitudes,
where | · | denotes the size of a set. The previous
operations O1, . . . , Ol−1 are sampled from the support
of p(Ok|O1, . . . , Ok−1) with 1 ≤ k < l. A task
transformation function with length L is constructed
by sampling an operation Ol from p(Ol|O1, . . . , Ol−1)
with l staring from 1 to L. In summary, we design
pτ (τ ;ω) to be a learnable distribution over the |G|L task
transformation functions with ω including all learnable
magnitudes and probabilities of image operations.

It is straightforward to directly sample Ol from
p(Ol|O1, . . . , Ol−1), but this sampling process is not
differentiable with respect to the parameters in
p(Ol|O1, . . . , Ol−1) which is a categorical distribution
by design. To address this, we apply a differentiable
relaxation on p(Ol = O|O1, . . . , Ol−1) via Gumbel-
Softmax reparameterization [10]. Concretely, in the
forward pass, we select Ol = argmaxO∈OL

l
(pO + rO),

where pO = p(Ol = O|O1, . . . , Ol−1), OL
l is the sup-

port of p(Ol|O1, . . . , Ol−1) and by design |OL
l | = |G|,

rO = − log(− log(u)), and u ∼ Uniform(0, 1). In the
backward pass, we have all the operations involved as
Ol(·) =

∑
O∈OL

l
sOO(·), where sO is calculated as

sO =
exp((pO + rO)/ϵ)∑

O∈OL
l
exp((pO + rO)/ϵ)

,∀O ∈ OL
l ,(4.6)

where ϵ is the temperature of the softmax function,
and it controls the sampling uncertainty: a larger ϵ
will generate a task distribution with more randomly
sampled task transformation functions. To sample
diverse task transformation functions during training,
we set ϵ to a large number, e.g. ϵ = 20.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Discussion. To sample the l-th operation for a
task transformation function, we need O(|G|l) param-
eters to specify p(Ol|O1, . . . , Ol−1), and a total of
O(|G|L) parameters to determine the whole distribution
pτ (τ ;ω). Although the additional parameters needed in
our method is exponential with respect to L, the value
of L is usually very small in practice. We find that using
L ≤ 5 is sufficient to achieve good performance. More-
over, |G| is usually in the order of tens or less. Hence,
the number of additional learnable parameters induced
by our method is negligible when it is compared with
that of a meta-model.

4.4 Learning Objective With the task transforma-
tion layer, we name the new meta-learning framework
as learning to learn task transformations (L2TT), which
optimizes a training task distribution by transforming
randomly constructed tasks with a set of learnable task
transformation functions. Given pτ (τ ;ω) and the distri-
bution of randomly constructed tasks p(T), the learning
objective of our proposed method L2TT is:

fθ∗ , ω∗ = B
(
ET ′∼p̃(T ′)L(T ′)

)
(4.7)

s.t. p̃(T ′) =

∫
τ

∫
T
p(T ′|T , τ)p(T)pτ (τ ;ω),(4.8)

L(T ′) =
1

nQ

∑
(x,y)∈Q′

ℓ(fθ̂(x), y),(4.9)

fθ̂ = A(fθ,S ′),(4.10)

where p(T ′|T , τ) denotes the distribution of the trans-
formed task T ′ given T and τ . By providing the trans-
formed support set S ′ and the query set Q′ in T ′ to the
inner and outer loop learning procedures, respectively,
we naturally embed task transformations in the learn-
ing to learn framework and can jointly optimize them
with the meta-model. Eq. (4.8) shows the new task dis-
tribution p̃(T ′) depends on pτ (τ ;ω). By optimizing ω,
we equivalently optimize the task distribution such that
it is well tuned with the underlying model architecture
and the meta-learning algorithm.

One of the learning outcomes is the optimized task
transformation function distribution p(τ ;ω∗). If we av-
erage all the learned magnitudes with the corresponding
probabilities over all the transformation functions, we
obtain a new metric called the average task transfor-
mation magnitude (AvgM-TT). This metric indicates
the overall task difficulty required by training a given
meta-model with the provided meta-learning algorithm
and the training dataset. As shown in the experiments,
AvgM-TT provides a quantitative way of comparing be-
tween different meta-learning algorithms, meta-model
architectures, and training datasets.

5 Experiments

We conduct experiments to answer the following re-
search questions (RQs). RQ1: Is our L2TT meta-
learning framework effective for different meta-learning
algorithms and meta-model architectures? RQ2: How
our method compares with other methods that can also
change images in a task? RQ3: How the learned task
transformations differ for various combinations of meta-
learning algorithms and meta-model architectures? We
also show the results of different designs of task trans-
formations in ablation study.

5.1 Experimental Setup
Datasets. CIFAR-FS [2] is a lightweight yet chal-

lenging few-shot image classification benchmark, and it
allows fast prototyping. The dataset consists of all 100
classes from CIFAR-100 [12], and the classes are split
into 64, 16, and 20 for meta-training, meta-validation,
and meta-testing respectively. There are 600 images of
size 32 × 32 in each class. miniImageNet [21] is a
challenging few-shot classification benchmark without
demanding computational resources. It contains 100
classes with each having 600 images. Each image is
down sampled to have the size of 84×84. We follow the
dataset split from [21] and divide the dataset into three
non-overlapping sets of classes, forming meta-training,
meta-validation, and meta-testing sets. The class num-
bers in the three sets are 64, 16, and 20, respectively.

Baseline methods. For RQ1 and RQ3, we select
four meta-learning algorithms, including three metric-
based meta-learning algorithms: R2D2 [2], MetaOptNet
[13], and ProtoNet [26], and one gradient-based meta-
learning algorithm MAML [8]. We select ResNet12 and
CNN64 (4 64-filter convolutional layers) as the meta-
model architectures. We follow the implementations
in [18] and give the implementation details in the ap-
pendix. For RQ2, the most related methods for com-
parison are data augmentation methods. We only con-
sider augmentation in the input pixel space for fair
comparison since the image operations that we use all
work in this space. Specifically, we include SimpleAug,
AutoAugment [5], and MetaDA [18] in the experi-
ments. SimpleAug uses the following transformation
RandomCrop→ ColorJitter→RandomHorizontalFlip

to transform each sample in a task, and it is the de-
fault augmentation method in many meta-learning al-
gorithms [25, 2, 13, 31, 33]. AutoAugment contains sets
of augmentation policies optimized for specific datasets,
e.g., CIFAR-100 and ImageNet. Each policy is a chain
of image operations. MetaDA [18] manually designed
a set of augmentation policies which augment a task
by transforming the samples in the support set, in the
query set, or in the whole task. Since MetaDA adopts

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

CutMix [32] to change the query samples (called QC),
the training objective changes from predicting the labels
to additionally predicting the areas of the two image
patches in a mixed image created by Cutmix. For fair
comparison, we apply QC to SimpleAug, AutoAugment,
and our method and get SimpleAug-QC, AutoAugment-
QC, L2TT-QC, respectively.

5.2 Implementation Details
Task transformations. For SimpleAug-QC, we

append QC to the end of the transformation in Sim-
pleAug. To apply AutoAugment to meta-learning, we
randomly sample an augmentation policy from Au-
toAugment as the task transformation function. Then,
for AutoAugment-QC, we append QC to the end of the
sampled policy. For MetaDA, we also randomly sam-
ple policies from its manually designed augmentation
policies. For our proposed method, we select 18 aug-
mentation functions from [9, 3] as the set of differen-
tiable image operations G. The details of these func-
tions are show in the appendix. The hyperparameters
L and ϵ specify how a task transformation function is
constructed. We use the validation accuracy of a meta-
trained model to select the best L and ϵ.

Meta-training. To meta-train our models, we use
the SGD optimizer with 0.9 momentum and the weight
decay of 5 × 10−4. The learning rate starts at 0.1 and
decays following a cosine annealing scheduler. We stop
training at epoch 100. In each epoch, we sample 1000
batches of tasks with each batch containing 8 tasks.
Each task is 5-way 5-shot; it contains randomly sampled
5 classes, and each class has 5 samples in the support
set and 6 samples in the query set. The best model is
selected using the validation accuracy. Details of the
training settings are shown in the appendix.

In the evaluation phase, we report the 1-shot and
5-shot performance of a model using the average clas-
sification accuracy with 95% confidence interval over
10,000 randomly sampled test tasks. Our code is im-
plemented with PyTorch [20]. All the experiments are
conducted on the Nvidia RTX 8000 GPUs. We pro-
vide our code and additional supplementary material at
https://github.com/gtzheng/L2TT.

5.3 Results For RQ1, we evaluate our proposed
L2TT framework on the CIFAR-FS and miniImageNet
datasets in five meta-learning settings specified by meta-
model architectures and meta-learning algorithms. The
Standard meta-learning framework from Eq. (3.1) to
Eq. (3.3) is the default meta-learning framework for
the five meta-learning settings, and we use SimpleAug
as the data augmentation method. The 5-way few-
shot classification accuracies with 95% confidence in-

tervals are reported in Table 1, and the best re-
sults are highlighted in bold fonts. Compared with
the Standard framework, our proposed L2TT frame-
work achieves consistent performance improvement on
the two datasets across all the five meta-learning set-
tings with different meta-model architecture and meta-
learning algorithms. This universal improvement veri-
fies the effectiveness of our method in different meta-
learning settings. Moreover, it also implies that the
mismatch between training tasks, meta-learning algo-
rithms, and meta-model architectures, is prevalent in
many meta-learning settings. By learning to learn task
transformations, we can optimize the training task dis-
tribution for a give meta-model architecture and a meta-
learning algorithm to provide further performance im-
provement. The performance gains achieved by our
method are larger when we use deeper meta-model ar-
chitectures, e.g., the gains achieved with ResNet-12 are
larger than those with CNN64.

In our method, a task transformation function is
designed to have several image operations. This design
choice relates our method to the widely used data aug-
mentation methods and gives rise to RQ2. Although
the goal of our method is different from a typical data
augmentation method which aims to generate diverse
samples, our method of learning to learn task transfor-
mations generates diverse samples like a typical data
augmentation method does. We compare our method
with three data augmentation methods: SimpleAug-
QC, AutoAugment-QC, and MetaDA. For fair compar-
ison, we also include QC in our method and denote the
new method as L2TT-QC. Table 2 shows the 5-way few-
shot classification accuracies with 95% confidence inter-
vals of the five meta-models trained with these methods.
We highlight the best results in bold fonts in Table 2.
From the data augmentation perspective, we observe
that L2TT-QC performs the best in all the five meta-
learning settings and on the two datasets.

Moreover, among the methods compared in Table 2,
MetaDA is a competitive method. It is specifically de-
signed for meta-learning and has 9 augmentation poli-
cies manually designed with the expert knowledge about
meta-learning, such as considering the support-query
structure of a task in designing the policies. How-
ever, MetaDA does not consider the difference in various
meta-learning settings. In contrast, our method learns
task transformations which can be automatically opti-
mized for a specific meta-learning setting. Additionally,
MetaDA shows a tendency to overfit to the 5-shot set-
ting since it outperforms AutoAugment-QC in almost
all the 5-shot cases but is inferior to AutoAugment-QC
in more than half of the 1-shot cases, especially in those
with the miniImageNet dataset. Since all the models

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/gtzheng/L2TT

Architecture
Meta-learning
algorithm

Meta-learning
framework

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2
Standard 72.53±0.11 84.16±0.08 60.59±0.10 75.90±0.08
L2TT 75.96±0.11 86.72±0.08 63.56±0.11 78.25±0.08

ResNet-12 ProtoNet
Standard 70.42±0.12 83.25±0.08 58.28±0.10 75.82±0.08
L2TT 73.63±0.11 85.76±0.08 60.82±0.11 78.16±0.08

ResNet-12 MetaOptNet
Standard 71.56±0.12 84.03±0.08 60.51±0.10 76.34±0.08
L2TT 74.34±0.11 86.19±0.08 62.50±0.10 78.17±0.08

CNN64 ProtoNet
Standard 61.10±0.12 79.28±0.09 47.43±0.10 70.55±0.08
L2TT 63.73±0.11 81.06±0.09 49.12±0.10 71.57±0.08

CNN64 MAML
Standard 55.81±0.11 75.50±0.09 42.38±0.10 64.64±0.09
L2TT 58.50±0.11 76.16±0.09 47.70±0.10 64.75±0.09

Table 1: Performance comparison between our proposed L2TT and the Standard meta-learning frameworks under
different meta-learning algorithms and meta-model architectures on the CIFAR-FS and miniImageNet datasets.

Architecture
Meta-learning
algorithm

Data augmentation
method

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2

SimpleAug-QC 76.01±0.11 86.21±0.08 64.24±0.11 78.42±0.08
AutoAugment-QC 76.36±0.11 86.86±0.08 64.93±0.11 78.82±0.08

MetaDA 76.00±0.11 87.25±0.08 63.78±0.10 78.96±0.08
L2TT-QC 77.40±0.11 87.76±0.08 65.82±0.10 80.36±0.08

ResNet-12 ProtoNet

SimpleAug-QC 75.04±0.11 86.29±0.08 60.69±0.11 76.43±0.09
AutoAugment-QC 75.51±0.11 86.57±0.08 61.94±0.11 77.41±0.09

MetaDA 75.00±0.11 87.06±0.08 60.63±0.11 78.13±0.08
L2TT-QC 76.52±0.11 87.12±0.08 63.07±0.11 78.79±0.08

ResNet-12 MetaOptNet

SimpleAug-QC 73.20±0.12 86.29±0.08 64.71±0.11 79.03±0.08
AutoAugment-QC 73.37± 0.11 86.45±0.08 65.19±0.10 79.47±0.08

MetaDA 73.97±0.11 86.98±0.08 64.00±0.10 79.43±0.08
L2TT-QC 76.65±0.11 87.84±0.08 65.60±0.10 80.99±0.08

CNN64 ProtoNet

SimpleAug-QC 63.26±0.12 80.63±0.08 49.95±0.10 71.39±0.08
AutoAugment-QC 62.74±0.12 79.87±0.09 49.90±0.10 69.53±0.09

MetaDA 63.07±0.12 80.86±0.08 49.67± 0.10 71.39±0.08
L2TT-QC 63.75±0.11 81.41±0.08 50.67±0.10 71.76±0.08

CNN64 MAML

SimpleAug-QC 58.80±0.12 76.67±0.10 48.57±0.10 66.03±0.09
AutoAugment-QC 55.82±0.12 72.16±0.10 47.08±0.10 63.59±0.09

MetaDA 60.20±0.12 77.36±0.09 47.51±0.10 66.79±0.09
L2TT-QC 61.20±0.12 78.12±0.09 48.91±0.10 66.90±0.08

Table 2: Performance comparison between various data augmentation methods for different meta-learning
algorithms and meta-model architectures on the CIFAR-FS and miniImageNet datasets.

are meta-trained in the same 5-way 5-shot setting, the
results show that MetaDA cannot generalize well to a
low-shot setting where the number of labeled samples in
the support set of a task is small. Our method does not
have the above limitation. More results can be found in
the appendix.

For RQ3, we calculate AvgM-TT for the five meta-
learning settings and show the results in Figure 1. By
design, a higher magnitude indicates a more aggressive
transformation on the images in a task. Among the
first four metric-based settings in Figure 1, we observe
that the AvgM-TTs for the miniImageNet dataset are
higher than those for the CIFAR-FS dataset. This in-
dicates that we generally need “harder” tasks for the
larger and complex miniImageNet dataset than those
for the smaller and simple CIFAR-FS dataset. How-
ever, for the gradient-based setting CNN64-MAML, the
two AvgM-TTs on the two datasets are very similar,

indicating that MAML is not very sensitive to train-
ing data with varying complexities. The two values
are also larger than those in the four metric-based set-
tings. This indicates that MAML is easier to suffer
from overfitting than the three metric-based algorithms
and needs “harder” tasks in training. We also observe
that deeper meta-model architectures require “harder”
tasks, as shown by the higher AvgM-TTs of ResNet12-
ProtoNet than those of CNN64-ProtoNet on respective
datasets. Overall, AvgM-TT indicates the overall com-
plexity involving training datasets, model architectures,
and meta-learning algorithms.

5.4 Ablation Study Task transformations are con-
structed by sampling from a distribution of task trans-
formations. Different design choices affect the overall
performance. We study two important hyperparame-
ters L and ϵ of the distribution. The function length L

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

miniImageNet

CIFAR-FS

0.30

0.40

0.32

0.34

0.36

0.38

CNN64
ProtoNet

ResNet12
R2D2

ResNet12
MetaOptNet

ResNet12
ProtoNet

A
v
gM
-T
T

CNN64
MAML

Figure 1: AvgM-TTs for different meta-learning algo-
rithms and meta-model architectures on the miniIma-
geNet and CIFAR-FS datasets.

L Shot
ϵ

10 20 ∞

1
1-shot 73.08±0.12 73.73±0.12 73.65±0.12
5-shot 84.03±0.08 84.39±0.08 84.25±0.08

2
1-shot 75.30±0.11 75.92±0.11 72.65±0.11
5-shot 86.05±0.08 86.30±0.08 84.87±0.08

3
1-shot 74.75±0.11 75.96±0.11 75.03±0.11
5-shot 85.74±0.08 86.72±0.08 85.97±0.08

4
1-shot 75.11±0.11 72.04±0.11 73.44±0.11
5-shot 86.16+-0.08 84.60±0.08 85.36±0.08

Table 3: Analysis on different design choices for task
transformation functions. We study various length-L
task transformation functions sampled with different
levels of sampling uncertainty controlled by τ . We use
R2D2 with ResNet-12 on the CIFAR-FS dataset.

controls the number of image operations in a task trans-
formation. The temperature ϵ controls the uncertainty
during the sampling of a task transformation. A larger
ϵ will produce more random sampling results. We use
ϵ = ∞ to denote the uniform sampling of image opera-
tions. In other words, all possible task transformations
have equal chance of being selected during training. We
use ResNet-12 and R2D2 in our L2TT framework with
different Ls and ϵs. The results are show in Table 3.
We observe improved performance for each ϵ when L
increases from 1 to 3. A larger L increases the rep-
resentation power of a task transformation and offers
more flexibility in how a training task distribution can
be transformed. However, as shown by the results when
L = 4, a too large L hurts the performance. We also
note that uniformly sampling image operations will re-
sult in suboptimal performance, as shown by the results
when ϵ = ∞. This inferior performance with ϵ = ∞
indicates that task transformations are not of equal im-
portance, and this also justifies our probabilistic mod-
eling of task transformations.

6 Conclusion

In this paper, we introduced a task transformation layer
to address the mismatch between training tasks and a

given meta-learning setting specified by the meta-model
architecture and the meta-learning algorithm during
meta-training. The added layer adjusts the difficulty of
an input task by transforming the task to control the in-
formation flowing from the meta-model input to its out-
put. We implemented the task transformation layer as a
stochastic function with differentiable image operations
as its building blocks, which leads to a new metric called
AvgM-TT indicating the overall task difficulty required
for training on a specific dataset in a certain meta-
learning setting. Experimental results demonstrated the
effectiveness of our method in improving the generaliza-
tion performance of various meta-learning algorithms on
different model architectures and datasets.

Acknowledgment

This work is supported in part by the US National
Science Foundation under grants 2106913, 2008208,
1955151. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. arXiv preprint arXiv:1308.3432, 2013.

[2] Luca Bertinetto, Joao F. Henriques, Philip Torr, and
Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on
Learning Representations, 2019.

[3] Alexander Buslaev, Vladimir I. Iglovikov, Eugene
Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. Albumentations: Fast and flexi-
ble image augmentations. Information, 11(2), 2020.

[4] Thomas M Cover. Elements of information theory.
John Wiley & Sons, 1999.

[5] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vi-
jay Vasudevan, and Quoc V. Le. Autoaugment: Learn-
ing augmentation strategies from data. IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 113–123, 2019.

[6] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 18613–18624. Curran Asso-
ciates, Inc., 2020.

[7] Terrance DeVries and Graham W Taylor. Improved
regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Ma-
chine Learning, volume 70, pages 1126–1135, 2017.

[9] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and
Hideki Nakayama. Faster autoaugment: Learning
augmentation strategies using backpropagation. In
European Conference on Computer Vision, pages 1–16.
Springer, 2020.

[10] Eric Jang, Shixiang Gu, and Ben Poole. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations, 2015.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.

[13] Kwonjoon Lee, Subhransu Maji, Avinash Ravichan-
dran, and Stefano Soatto. Meta-learning with differen-
tiable convex optimization. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10657–10665, 2019.

[14] Yoonho Lee and Seungjin Choi. Gradient-based meta-
learning with learned layerwise metric and subspace. In
International Conference on Machine Learning, 2018.

[15] Zhenguo Li, Fengwei Zhou, Fei Chen, and Huang Li.
Meta-SGD: Learning to learn quickly for few shot
learning. ArXiv, abs/1707.09835, 2017.

[16] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim,
and Sungwoong Kim. Fast autoaugment. In Advances
in Neural Information Processing Systems, 2019.

[17] Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan
Wang. Direct differentiable augmentation search. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12219–12228, 2021.

[18] Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi
Kong, and Tom Goldstein. Data augmentation for
meta-learning. In International Conference on Ma-
chine Learning, pages 8152–8161. PMLR, 2021.

[19] Boris Oreshkin, Pau Rodŕıguez López, and Alexandre
Lacoste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In Advances in Neural
Information Processing Systems 31, pages 721–731.
2018.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Informa-
tion Processing Systems, pages 8024–8035, 2019.

[21] Sachin Ravi and Hugo Larochelle. Optimization as a
model for few-shot learning. In International Confer-
ence on Learning Representations, 2017.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–

252, 2015.
[23] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski,

Oriol Vinyals, Razvan Pascanu, Simon Osindero, and
Raia Hadsell. Meta-learning with latent embedding
optimization. In International Conference on Learning
Representations, 2019.

[24] Jin-Woo Seo, Hong-Gyu Jung, and Seong-Whan Lee.
Self-augmentation: Generalizing deep networks to un-
seen classes for few-shot learning. Neural Networks,
138:140–149, 2021.

[25] Jake Snell, Kevin Swersky, and Richard Zemel. Pro-
totypical networks for few-shot learning. In Advances
in Neural Information Processing Systems 30, pages
4077–4087. 2017.

[26] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr,
and T. M. Hospedales. Learning to compare: Rela-
tion network for few-shot learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 1199–1208, 2018.

[27] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the importance of initialization and
momentum in deep learning. In Sanjoy Dasgupta and
David McAllester, editors, International Conference on
Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pages 1139–1147, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

[28] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
koray kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural
Information Processing Systems 29, pages 3630–3638.
2016.

[29] Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying
Wei, Li Tian, James Zou, Junzhou Huang, et al. Im-
proving generalization in meta-learning via task aug-
mentation. In International Conference on Machine
Learning, pages 11887–11897. PMLR, 2021.

[30] Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-
learning with fewer tasks through task interpolation.
In International Conference on Learning Representa-
tions, 2022.

[31] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei
Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8808–8817, 2020.

[32] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 6023–6032, 2019.

[33] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua
Shen. Deepemd: Differentiable earth mover’s distance
for few-shot learning, 2020.

[34] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao
Zhong. Adversarial autoaugment. In International
Conference on Learning Representations, 2020.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Appendix

A Meta-Learning Settings
Meta-Learning Algorithms. We use three

metric-based meta-learning algorithms and one
gradient-based meta-learning algorithm in the exper-
iments. A metric-based algorithm first uses a feature
extractor to get the embedding of each sample, and
then learns a specifically designed classification head
to classify samples based on their embeddings. A
gradient-based algorithm uses gradient descent to learn
a new classifier to classify samples. The four algorithms
are described as follows:

• ProtoNet[25] is a metric-based meta-learning algo-
rithm. It first calculates a class prototype from the
support set of a task by averaging embeddings of
the samples with the same label. Then, it searches
the nearest class prototype for each sample in the
query set and predicts the sample to have the same
class label as the nearest class prototype.

• R2D2 [2] is the abbreviation for Ridge Regression
Differentiable Discriminator, and it is a metric-
based meta-learning algorithm. It adopts ridge re-
gression as the classification head which is differen-
tiable and has closed form solutions.

• MetaOptNet [13] is a metric-based meta-learning
algorithm. It adopts an SVM classifier as the
classification head in few-shot classification.

• MAML [8] is a gradient-based meta-learning algo-
rithm. It aims to learn a model that can quickly
generalize to new concepts with a few gradient de-
scent steps.

Meta-Model Architectures. We call the meta-
model architectures and backbones interchangeably. Es-
sentially, they are feature extractors that convert inputs
to their vector representations. In the experiments, we
use the ResNet-12 backbone adopted in [19] and the
four-layer convolutional backbone (CNN64) with 64 fil-
ters in each layer adopted in [25].

B Implementation Details Meta-Learning. We
follow the implementations in [18] to implement the
above meta-learning algorithms and the backbones.
Similar to [19], we adopt a learnable scaler to scale the
outputs of each of the classification heads from the three
metric-based meta-learning algorithms. For MAML, we
adopt its first-order approximation in the experiments
to achieve a good tradeoff between computational com-
plexity and few-shot classification performance. More-
over, we use a 5-step gradient descent (10 steps in eval-
uation) with a learning rate of 0.01 in the inner loop

of MAML, an Adam optimizer with a learning rate of
0.001 in the outer loop of MAML, and a cosine annealing
scheduler with the minimum learning rate of 1 × 10−5

to control the learning rate in the outer loop.
Differentiable Image Operations. The image

operations/functions used in our method are listed
in Table A.1. Each function has its description in
the “Description” column and its own transformation
magnitude listed in the “Magnitude” column. We
implement each image operation as a differentiable
function in the sense that its output is differentiable
with respect to the input. However, for functions that
are not inherently differentiable, e.g., the posterize

function, we use the straight-through estimator [9, 1] to
approximate the corresponding gradient. Specifically,
given an operation O(x) = g(x;m) with an input x
and a transformation magnitude m, we implement the
operation as O(x) = StopGrad(g(x;m)−x−m)+x+m,
where StopGrad is a stop gradient operation and treats
its operand as a constant in the backward pass. We
find that this method is simple and works well in our
experiments.

L2TT Algorithm. The details of L2TT are shown
in Algorithm 1.

Algorithm 1 L2TT

Input: training tasks distribution p(T), parameters of
the task transformation distribution ω, a meta-learning
algorithm E = {A,B}, a meta-model fθ
Output: θ

1: //Outer loop
2: while in algorithm B do
3: Randomly construct a task T such that T ∼ p(T)

4: Sample τ from pτ (x;ω)
5: T ′ = {x′|x′ = τ(x), x ∈ T }
6: Split T ′ such that T ′ = {S ′,Q′}
7: //Inner loop
8: fθ̂ = A(fθ,S ′)
9: //Task loss

10: L(T ′) = 1
nQ

∑
(x,y)∈Q′ ℓ(fθ̂(x), y)

11: Use B to jointly optimize θ and ω with respect to
L(T ′).

12: end while
13: return θ, ω

Data Augmentation Methods. We describe the
two data augmentation methods used in our experi-
ments: AutoAugment [5] and MetaDA [18].

• AutoAugment. There are 25 policies optimized
for a selected dataset. Each policy is a sequence
of transformations. In AutoAugment, each pol-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Function Magnitude Description Function Magnitude Description

Shift r [0,1] Change red channel value Shift x [0,0.5] Shift horizontally

Shift g [0,1] Change green channel
value

Shift y [0,0.5] Shift vertically

Shift b [0,1] Change blue channel
value

Scale [0.1,10] Scale images

Brightness [-1,1] Change brightness Self mix None Self-mix up an image

Contrast [1,10] Change contrast Posterize [0,8] Reduce number of bits for
each color channel

Solarize [0,1] Invert pixels under a
threshold value

Equalize None Equalize the histogram of
an image

Hflip None Horizontally flip Cutout fixed1 [0,1] Cutout 8 regions with a
random size in an image

Vflip None Vertically flip Cutout fixed2 [0,8] Cutout random number
of regions with fixed size

Rotate [-180,180] Rotate an image Sample pairing [0,1.0] Combine two different
images with random
weights

Table A.1: Image operations used in our method.

icy is designed to have 2 transformations. For
meta-models trained on the CIFAR-FS dataset,
we use the set of policies optimized for CIFAR-
10. For meta-models trained on the miniIma-
geNet dataset, we use the set of policies opti-
mized for ImageNet [22]. To use AutoAugment in
training, we first apply the sequential transforma-
tion RandomCrop→RandomHorizontalFlip to an
image. Then, we randomly sample a policy from
the selected set of AutoAugment policies and ap-
ply it to the transformed image. Finally, we apply
Cutout [7] with 16x16 pixels [5] to the image ob-
tained from the previous step.

• MetaDA. There are four basic augmentation func-
tions in MetaDA: SelfMix, Cutmix, random erase,
and rotation. SelfMix [24] replaces a patch of
an image with another patch from the same im-
age. Cutmix [32] cuts an image patch from one
image and pastes the patch to another image to
construct a mixed image with the ground truth
labels of the two original images mixed propor-
tionally to reflect the area of the image patch
in the mixed image. Rotation rotates an image
with a degree which is a multiple of 90. Ran-
dom erase (RE) randomly erases patches from an
image. For each task, the augmentation func-
tions can be applied to the support set (S), the
query set (Q), or the whole task (T). We use the
large-size pool defined in [18] as the set of aug-

mentation policies. These policies are: Q-cutmix,
Q-RE, S-RE, T-Rotation, Q-cutmix→T-rotation,
Q-RE→T-Rotation, Q-RE→S-RE, Q-cutmix→Q-
RE, Q-cutmix→S-RE.

Note that MetaDA includes Q-cutmix (QC) in the
set of augmentation policies. Since QC changes the
learning objective from minimizing classification loss to
additionally predicting the area of an image patch in a
mixed image, we cannot directly compare MetaDA with
AutoAugment. For fair comparison, we append QC to
the end of the policy sampled from AutoAugment.

Hyperparameter Settings. In Table A.2, we give
the settings for the two important hyperparameters L
and ϵ used in different meta-learning settings listed in
Table 1. We select the optimal values for each meta-
learning setting based on the validation performance.
For metric-based meta-learning algorithms, we observe
that L is larger for the settings with a ResNet-12 back-
bone than the one with a CNN64 backbone. In gen-
eral, a task transformation with a large L indicates large
variations in the images of a transformed task, and the
transformed task can be considered as a “hard” task.
Moreover, we observe that for MAML with the same
CNN64 backbone, the optimal L is even larger than
those for the metric-based algorithms with the deeper
ResNet-12 backbone. This indicates that MAML is
easier to suffer from overfitting when compared with
the three metric-based meta-learning algorithms. For
training MAML on the miniImageNet dataset, we set

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

ϵ = ∞ which means uniformly sampling task transfor-
mations. This is because the task transformation dis-
tribution pτ (τ ;ω) tends to concentrate its probability
mass on certain trivial task transformations that make
little change to the images in a task, resulting in inferior
performance. Hence, we set ϵ to infinity to circumvent
this problem in this meta-learning setting.

For the experiments in Table 2, because of the
introduction of QC, we find that setting L = 1 works
well for all the meta-learning settings.

Architecture
Meta-learning
algorithm

CIFAR miniImageNet
L ϵ L ϵ

ResNet-12 R2D2 3 20 3 20
ResNet-12 ProtoNet 3 20 3 20
ResNet-12 MetaOptNet 3 20 3 20
CNN64 ProtoNet 2 20 2 20
CNN64 MAML 5 40 4 ∞

Table A.2: The values of L and ϵ used in Table 1.

C Additional Results

C.1 Meta-Learned Task Transformations. At
the end of meta-training, we show the most probable
task transformation with different lengths for ProtoNet-
CNN64 and ProtoNet-ResNet12 meta-trained on the
CIFAR-FS dataset. The results are shown in Table A.3.
These task transformations reflect the difference be-
tween different meta-learning settings. For the shallow
network CNN64, the meta-learned task transformations
are not as diverse as the ones meta-learned with the deep
network ResNet-12. For example, when L = 1, the max-
imum probability of sampling an operation is 0.09 in the
ProtoNet-CNN64 setting, while the value decreases to
0.07 in the ProtoNet-ResNet12 setting. Since the prob-
abilities of all the operations add up to 1, this means
that operations other than Equalize are more likely to be
sampled in the ProtoNet-ResNet12 setting than those
in the ProtoNet-CNN64 setting. We observe the same
trend for other values of L. With more operations in-
volved in a task transformation, we can create “harder”
tasks with more variations in the images of the tasks.
From the meta-learned most probable task transforma-
tions, we can conclude that in order to obtain a well-
trained meta-model, we need “harder” tasks for meta-
training in the ProtoNet-ResNet12 setting than in the
ProtoNet-CNN64 setting.

C.2 Performance Comparison on 10-way Tasks
We evaluate how well our method (L2TT-QC) general-
izes to a high-way setting by comparing the performance
of L2TT-QC, AutoAugment-QC, and MetaDA on 10-

way tasks generated from the CIFAR-FS and miniIma-
geNet datasets. We exclude the results of MAML since
it learns a fixed-way classifier during meta-training, and
it cannot be directly evaluated in this setting. All the
models are meta-trained on 5-way 5-shot tasks. The
few-shot classification accuracy results are shown in Ta-
ble A.4. We observe that our method generalizes well
to this challenging setting and achieves the best perfor-
mance in all the testing cases.

D Visualization of Transformed Images Fig-
ure A.1 shows three sets of images obtained by applying
three task transformations with variable numbers of im-
age operations to the original images in a sampled task.
With more image operations, the obtained images show
more variations than those obtained with less image op-
erations.

Equalize Equalize→Posterize(0.5)

Equalize→Posterize(0.5)→Cutout_fixed2 (0.5)

Original

Figure A.1: Visualization of three task transformations
with variable numbers of image operations.

E Visualization of Task Embeddings We visual-
ize the original tasks and their transformed versions us-
ing t-SNE. We obtain each task embedding by averaging
all the embeddings of the images in the same task. We
sample 2000 original tasks from the training split of the
CIFAR-FS dataset. For each task, we transform it with
a task transformation sampled from pτ (τ ;ω). We use
the backbone network meta-trained in the ProtoNet-
CNN64 setting on the CIFAR-FS dataset to extract
image embeddings. The visualization is shown in Fig-
ure A.2. We see that the meta-learned task transfor-
mations can generate not only tasks that are close to
the original ones, but also tasks that are distant in the
embedding space.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Architecture
Meta-learning
algorithm

L
Task Transformation

(· · · →Operation(Probability, Magnitude)→ · · ·)

CNN64 ProtoNet
1 Equalize(0.09,N/A)
2 Equalize(0.10,N/A)→RandomContrast(0.06,0.24)
3 Equalize(0.10,N/A)→RandomContrast(0.06,0.32)→Equalize(0.06,N/A)

ResNet-12 ProtoNet
1 Equalize(0.07,0.50)
2 Equalize(0.08,N/A)→Posterize(0.06,0.50)
3 Equalize(0.09,N/A)→Posterize(0.06,0.44)→Posterize(0.06,0.50)

Table A.3: Meta-learned task transformations with different lengths. We describe a task transformation as a
sequence of operations. Each operation has a probability and a magnitude. For operations that do not have
magnitudes, such as Equalize and Hflip, we set their magnitudes to “N/A”.

Architecture
Meta-learning
algorithm

Data augmentation
method

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2
AutoAugment-QC 63.01±0.08 76.66±0.06 48.16±0.07 65.11±0.06

MetaDA 62.46±0.08 77.27±0.06 47.52±0.07 65.33±0.05
L2TT-QC 63.78±0.08 77.36±0.06 51.07±0.07 68.64±0.05

ResNet-12 ProtoNet
AutoAugment-QC 62.08±0.08 76.33±0.06 45.25±0.07 63.12±0.06

MetaDA 61.74±0.08 77.01±0.06 44.68±0.07 64.40±0.06
L2TT-QC 62.66±0.08 77.22±0.06 46.42±0.07 64.79±0.06

ResNet-12 MetaOptNet
AutoAugment-QC 59.41±0.08 76.20±0.06 48.41±0.07 65.73±0.05

MetaDA 59.54±0.08 77.00±0.06 47.23±0.07 66.08±0.05
L2TT-QC 62.61±0.08 77.48±0.06 48.70±0.07 67.84±0.05

CNN64 ProtoNet
AutoAugment-QC 48.35±0.08 67.55±0.06 34.34±0.06 54.45±0.06

MetaDA 48.74±0.08 69.09±0.06 34.25±0.06 56.75±0.06
L2TT-QC 49.28±0.08 69.11±0.06 34.90±0.06 57.46±0.05

Table A.4: Few-shot classification accuracy comparison on 10-way tasks.

Figure A.2: Visualization of original and transformed
tasks via t-SNE.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related Work
	Preliminaries
	Methodology
	Task Transformation Layer
	Task Transformation Functions
	Sampling Strategy
	Learning Objective

	Experiments
	Experimental Setup
	Implementation Details
	Results
	Ablation Study

	Conclusion
	Meta-Learning Settings
	Implementation Details
	Additional Results
	Meta-Learned Task Transformations.
	Performance Comparison on 10-way Tasks

	Visualization of Transformed Images
	Visualization of Task Embeddings

