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Metric learning aims at automatically learning a distance metric from data so that the precise similarity be-

tween data instances can be faithfully reflected, and its importance has long been recognized in many fields.

An implicit assumption in existing metric learning works is that the learned models are performed in a reli-

able and secure environment. However, the increasingly critical role of metric learning makes it susceptible

to a risk of being malicious attacked. To well understand the performance of metric learning models in adver-

sarial environments, in this article, we study the robustness of metric learning to adversarial perturbations,

which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool

a well-learned model. However, different from traditional classification models, metric learning models take

instance pairs rather than individual instances as input, and the perturbation on one instance may not neces-

sarily affect the prediction result for an instance pair, which makes it more difficult to study the robustness

of metric learning. To address this challenge, in this article, we first provide a definition of pairwise robust-

ness for metric learning, and then propose a novel projected gradient descent-based attack method (called

AckMetric) to evaluate the robustness of metric learning models. To further explore the capability of the at-

tacker to change the prediction results, we also propose a theoretical framework to derive the upper bound

of the pairwise adversarial loss. Finally, we incorporate the derived bound into the training process of metric

learning and design a novel defense method to make the learned models more robust. Extensive experiments

on real-world datasets demonstrate the effectiveness of the proposed methods.
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1 INTRODUCTION

The calculation of distance or similarity between data instances serves as an important basis for
many machine learning and data mining tasks. For example, in the task of face verification [44],
the distance measurement between two instances plays an important role in determining whether
they belong to the same class or not; in the task of medical diagnosis, the diagnosis for a patient is
usually dependent on the similarity measurement between this patient and others [49, 72]; in the
task of image retrieval [9], images are typically ranked according to the similarity scores, which
measure their relevance to a given query. Although some simple metrics (e.g., Euclidean distance)
can be used to measure the similarity between data instances, they usually fail to capture the
idiosyncrasies of the data of interest. To address this challenge, the topic of metric learning, which
aims at automatically learning a distance metric from data so that the precise similarity between
data instances can be faithfully reflected, has drawn significant attention [17, 18, 24, 60].

An implicit assumption in existing metric learning works is that the learned models are per-
formed in a reliable and secure environment [20]. However, as metric learning plays an increas-
ingly critical role in many machine learning and data mining tasks, it is susceptible to a risk of
being malicious attacked. For example, in face verification, an attacker might attempt to introduce
imperceptible perturbations to some face images belonging to the same class so that they will
be deemed to be quite different by a well-learned metric model. In medical diagnosis, an attacker
might collude with a drug maker, and in order to recommend a particular drug to some patients, he
may carefully perturb the patients’ clinical information and let a well performed metric model out-
put high similarity scores when comparing these patients with those who take this drug. In both
cases, the well-learned metric models may be fooled by the malicious activities and provide mis-
leading similarity measurements. To well understand the performance of metric learning models
in adversarial environments, in this article, we study their robustness to adversarial perturbations,
which are also known as the imperceptible changes to the input data that are crafted by an attacker
to fool a well-learned model.

However, the robustness analysis of metric learning is more challenging than that of the tradi-
tional classification models. The robustness of a traditional classification model is usually defined
based on the minimal perturbation on an instance that is required to change the assigned label,
and such robustness is called pointwise robustness [2] as it treats each instance independently. But
for a learned metric model, since its goal is to precisely measure the similarity between instances
and further used to predict their similarity label (i.e., similar or dissimilar), the input are usually in-
stance pairs rather than individual instances. Thus, the predicted similarity label of each instance
pair is determined by the relative comparison of the two instances, and the perturbations on one
of them do not necessarily affect the assigned similarity label, which makes it more difficult to
study the robustness of metric learning models.

To address the above challenges, in this article, we first provide a definition of pairwise robustness

for metric learning. Based on this definition, we can study the effect of adversarial perturbations
on the similarity degrees of instance pairs. Then, we evaluate the robustness of metric learning
via designing a novel projected gradient descent-based attack method (called AckMetric), based
on which the attacker can craft adversarial instance pairs to fool a well-learned metric model. To
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further explore the capability of the attacker to change the prediction results of a metric learning
model, we also propose a theoretical framework to derive the upper bound of the pairwise adver-
sarial loss. The derived upper bound is attack-independent, and it serves as a certificate that for a
given metric learning model and test input, there is no attack that can force the introduced error to
exceed a certain value. Last but not least, to make the learned metric models more robust to adver-
sarial perturbations, we propose to incorporate the derived upper bound into the training process
of metric learning and design a novel defense mechanism. To the best of our knowledge, this is
the first work to study the robustness of metric learning to adversarial perturbations. Extensive
experiments on real-world datasets demonstrate the effectiveness of the proposed methods.

2 ROBUSTNESS ANALYSIS FOR METRIC LEARNING

In this section, we study the robustness of metric learning models via crafting adversarial pertur-
bations. Specifically, we firstly revisit the metric learning model for the sake of self-containedness.
Then, we define the notion of pairwise robustness of metric learning via generalizing the concept
of adversarial examples to adversarial instance pairs. For simplicity and without loss of generality,
in the following, we mainly focus (unless otherwise stated) on the scenarios where the attacker
aims at changing a similar instance pair to a dissimilar pair via adversarial perturbations. Lastly,
we propose a variant of projected gradient attack on metric learning (AckMetric), which shows
that state-of-the-art metric learning models are vulnerable to adversarial perturbations.

2.1 A Revisit to Metric Learning

Suppose there is a set of instances X = {xi }Ni=1, where xi ∈ Rd is d-dimensional. The goal of
metric learning is to learn a mapping from the training set so that each instance can be projected
into a new feature space, based on which the similarity degree of the pair (xi , x j ) can be calculated.
Without loss of generality; here, we normalize data to range [0, 1]. Existing metric learning models
can be divided into the following two categories: linear and nonlinear.

The linear models aim at learning a linear mappingW ∈ Rd∗d , based on which each instance xi

can be projected into a new feature space f (xi ) =Wxi [6, 17, 57, 71]. Although we aim at devel-
oping a general method to study the robustness of metric learning models with different distance
functions, without loss of generality, we use the widely adopted Mahalanobis distance function
to present our idea. Based on the Mahalanobis distance, the similarity degree of the instance pair
(xi , x j ) can be calculated as follows:

D (xi ,x j ) = ( f (xi ) − f (x j ))
T ( f (xi ) − f (x j )). (1)

The nonlinear metric learning models (i.e., deep metric learning models) aim at capturing the
nonlinear structures of the instances. In practice, the nonlinear models [7, 8, 16, 24, 32, 55] usually
adopt deep neural networks to capture the nonlinear structures of the instances. For example, [7]
proposes a new deep metric learning framework that utilizes the generated adequate hard nega-
tives (instead of the observed negatives) to train the distance metric to fully exploit the potential
of each negative sample. Hence, we mainly focus on the deep metric learning models that have
drawn significant attention recently due to the success of deep learning. The basic idea of deep
metric learning models is to explicitly train a L-layer deep neural network, based on which a set
of hierarchical nonlinear mappings can be derived to project the original input instances into a
new feature space for comparing. The derived nonlinear mappings are capable of guaranteeing
that the distance between similar samples is small and the distance between dissimilar samples
is large in the new feature space [45, 62, 70]. Assume that the trained L-layer neural network is
parameterized by the weights {W l ∈ Rhl ∗hl−1 }L

l=1
(note that the biases are included in the weights

with a corresponding fixed input of 1 for simplicity), wherehl represents the number of neurons in
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the lth layer of the network and h0 = d . Then, given the input instance xi ∈ Rd , the output of the
lth layer in the network can be written as f l (xi ) =W lσ ( f l−1 (xi )) =W lσ (W l−1σ (· · ·σ (W 1xi ))),
where σ (·) denotes the activation function. In particular, f 1 (xi ) =W 1xi . In this case, the similarity
degree of the instance pair (xi ,x j ) in the learned nonlinear feature space is calculated as

D (xi ,x j ) =
(
f L (xi ) − f L (x j )

)T (
f L (xi ) − f L (x j )

)
, (2)

where f L (xi ) =W Lσ (W L−1σ (· · ·σ (W 1xi ))).
Existing metric learning approaches are usually formulated based on some pre-defined similarity

and dissimilarity constraints during the training process, which require that the distance between
two instances should be less than a threshold if they are in the same class, otherwise the distance
should be larger than this threshold [6, 14, 43, 58, 60, 61, 72]. Formally, the constraints usually have
the following forms{

D (xi ,x j ) ≤ γ , if xi and x j have the same class label,
D (xi ,x j ) > γ , if xi and x j have different class labels,

(3)

where γ denotes the threshold that is used to train the learning model. By enforcing these con-
straints in the designed optimization framework, existing metric learning approaches can build a
model that maximizes the between-class distance and minimizes the within-class distance.

2.2 Pairwise Robustness of Metric Learning

Our ultimate goal is to ensure the robustness of a well-learned metric model in the testing stage.
For each instance pair (xi ,x j ), after calculating its similarity degree according to Equation (1) or
Equation (2), we assume that it will be assigned a similarity label (i.e., similar or dissimilar) by
the learned model based on the threshold γ . If D (xi ,x j ) ≤ γ , it will be treated as a similar pair,
otherwise it will be treated as a dissimilar pair. Please note that the value of γ is specified accord-
ing to the practical demand. Since the assigned similarity label of each instance pair (xi ,x j ) is
determined by the relative comparison of the two instances (i.e., xi and x j ) and the perturbation
on one of them may not necessarily affect the assigned similarity label, the notion of pointwise
robustness [2] for traditional classification models does not fit for the analysis of metric learning.
To address the above challenge, we formulate a definition of pairwise robustness for metric learn-
ing, based on which we can study the effect of adversarial perturbations on the similarity degrees
of instance pairs. For simplicity and without loss of generality, in the following, we mainly focus
(unless otherwise stated) on the scenarios where the attacker aims at changing a similar instance
pair to a dissimilar pair via adversarial perturbations.

Attack model. Following the line of work on adversarial attacks [4, 10, 13, 40, 41], we here
assume a white-box setting, which is a conservative and realistic assumption. The attacker in this
setting tries to evade the system by manipulating malicious instance pairs during the testing phase.
The attacker cannot change the metric learning algorithm used for the training of the learner, and
the attacker can only change the instance pairs during the testing stage. The attacker’s goal is to
deceive the trained metric learning model. Specifically, since the goal of metric learning is to learn a
distance metric that is used to calculate the similarity degree of different instance pairs, the attacker
here aims at crafting adversarial perturbations to alter the similarity degrees of instance pairs. For
simplicity and without loss of generality, in the following, we mainly focus (unless otherwise
stated) on the scenarios where the attacker aims at changing a similar instance pair to a dissimilar
pair via adversarial perturbations.1

1More discussions on the scenarios where the attacker aims at changing a dissimilar instance pair to a similar instance pair

are given in Section 5.1.
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Our work is inspired by the recent developments of adversarial attacks against deep learning,
which show that deep learning models are vulnerable to adversarial examples. Here, we give an
brief introduction of existing adversarial attack works [4, 10, 13, 40, 41, 74, 75]. Adversarial attacks
are manipulative actions that aim at undermining machine-learning performance and cause model
misbehavior. Specifically, an adversarial attack is a technique to find an adversarial perturbation
to craft an adversarial example, which is intentionally designed to cause the machine-learning
model to make a mistake. In other words, an adversarial example is an input that has been modi-
fied in a way that is imperceptible to humans, but is misclassified by a machine-learning system
whereas the original input was correctly classified [74, 75]. For the generation of the adversarial
examples, two conditions should be satisfied. The first condition is that the added adversarial per-
turbations are imperceptible to humans when comparing an original input x and its perturbed
version x̃ side by side. The second one is that the original clean input x and its perturbed version
x̃ are correctly and incorrectly classified by the prediction model, respectively. That is to say, an
adversarial example is an instance with imperceptible and intentional feature perturbations that
cause a machine-learning model to make a false prediction. In the following, we generalize the
definition of pointwise adversarial examples to adversarial instance pairs where the adversarial
perturbations are simultaneously added to both of the two instances in each instance pair. Note
that the predicted similarity label of each instance pair is determined by the relative comparison
of the two instances, and the perturbations on one of them do not necessarily affect the assigned
similarity label, which makes it more difficult to study the robustness of metric learning models. In
contrast, the robustness of a traditional pointwise model is usually defined based on the minimal
perturbation on a specific instance that is required to change the assigned prediction result [2].

Definition 2.1 (Pairwise Robustness of Metric Learning). Note that given a well-trained metric
learning model (i.e.,D) and an instance pair (xi ,x j ), the similarity degree of this instance pair in the
newly learned feature space can be calculated as D (xi ,x j ). Without loss of generality, we further
assume that this given instance pair (xi ,x j ) is a similar instance pair that satisfies D (xi ,x j ) ≤ γ .
The pairwise robustness of the given distance metric function D with respect to the instance pair
(xi ,x j ) is defined as ρpair (D; (xi ,x j )) := minδi ∈Rd ,δj ∈Rd ‖δi ‖p + ‖δ j ‖p s.t. D (xi +δi ,x j +δ j ) > γ ,

where δi ∈ Rd and δ j ∈ Rd denote the perturbations on instances xi and x j , respectively. ‖·‖p
denotes the p-norm.

Note that in the above definition, the types of the adversarial perturbations applied in the pro-
posed pairwise adversarial attacks depend on the targeted data and desired effect, and the adversar-
ial perturbations need to be customized for different data to be reasonably adversarial. Specifically,
for each targeted data, we generate its adversarial perturbations in the direction of the gradient,
which means that the images are intentionally altered so that the model fails. Formally, based on
the above definition, the attacker can generate the adversarial instance pair through maximizing
the margin Δ(xi + δi ,x j + δ j ), and the attack will succeed if Δ(xi + δi ,x j + δ j ) > 0. That is to
say, the computation of an adversarial pairwise perturbation for a new data requires solving a
data-dependent optimization problem from scratch, which uses the full knowledge of the model.
Additionally, the types of perturbations applied in adversarial attacks also depend on the target
data type. For instance, for the image and audio data, it makes sense to consider small data per-
turbation as a threat model because it will not be easily perceived by a human but may make
the target model to misbehave, causing inconsistency between human and machine. However, for
some data types such as text, perturbation (by simply changing a word or a character) may disrupt
the semantics and can easily be detected by humans. Therefore, the threat model for text should
be naturally different from image or audio.
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In the above definition, the magnitude of the added adversarial perturbations reflects the ro-
bustness of the attacked metric learning model. Note that the above definition of the pairwise
robustness of metric learning corresponds to finding pairwise adversarial perturbations on an in-
stance pair. Importantly, one character of the above defined pairwise robustness is that the smaller
the magnitude of the adversarial perturbations (i.e., the value of ρpair (D; (xi ,x j ))) is, the easier
an adversarial instance pair (i.e., (xi + δi ,x j + δ j )) can be generated, the less robust the learned
metric learning model is. Another character of the adversarial perturbations is their intrinsic de-
pendence on datapoints: The pairwise adversarial perturbations are specifically crafted for each
data independently. As a result, the computation of an adversarial perturbation for a new data
requires solving a data-dependent optimization problem from scratch, which uses the full knowl-
edge of the model. One of the most intriguing characters about the defined adversarial pairwise
perturbations is their transferability across different models. The perturbed adversarial instance
pairs can transfer between different metric learning models: Adversarial instance pairs generated
based on a specific model will often fool other unseen models with a significant success rate. This
allows the attacker to leverage it to attack the deployed systems without any query, which can
raise severe security issue particularly in safety-critical scenarios. In practice, the pairwise adver-
sarial transferability is usually influenced by several important factors, e.g., the model architecture
and local smoothness of loss surface for generating adversarial pairs.

2.3 Adversarial Attacks against Metric Learning

In this section, we first design a projected gradient descent-based attack framework to study the
robustness of metric learning, which can craft adversarial instance pairs to fool the well-learned
metric models. Note that an adversarial attack on a metric learning model is a process for generat-
ing adversarial perturbations. Then, we present the optimization solution to the formulated attack
framework to find adversarial instance pairs by using the gradient of the underlying metric learn-
ing model. After that, we present the optimization solutions for the linear and nonlinear metric
learning models. Note that the robustness of metric learning can be reflected by how easy it is to
craft adversarial pairs.

Overview. The key idea of the proposed attack is to find an adversarial instance pair through
solving a constrained optimization problem. Specifically, the proposed AckMetric attempts to find
the pairwise adversarial perturbation that minimizes the pairwise adversarial loss of a metric learn-
ing model on a particular instance pair while keeping the size of the perturbation smaller than a
specified amount referred to as ϵ . In our adversarial setting, this constraint on the pairwise adver-
sarial perturbations is expressed as the L∞ norm of the adversarial perturbation and it is added so
the content of the adversarial instance pair is the same as the unperturbed instance pair’ or even
such that the adversarial instance pair is imperceptibly different to humans. Here, we follow the
general security analysis methodology for adversarial learning [59] and assume that the attacker
has full knowledge of the attacked metric learning model.

The proposed attack. Here, we present the proposed adversarial attack (i.e., AckMetric) on the
metric learning models, which is a constrained optimization problem. Note that the adversarial
attack on a metric learning model is a process for generating adversarial perturbations. In our
proposed adversarial attack against metric learning, for each similar instance pair (xi ,x j ) whose
similarity is no larger than the pre-defined threshold (i.e., Δ(xi ,x j ) = D (xi ,x j )−γ ≤ 0), the attacker
simultaneously crafts its adversarial instance pair through adding the adversarial perturbations to
both of the two instances in this instance pair, such that the well-learned distance function D is
fooled to report a dissimilar label. More specifically, we formalize the generation of the adversarial
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instance pairs as a solution to the following optimization problem:

max
| |δi | |∞+ | |δj | |∞<ϵ

D (xi + δi ,x j + δ j ) − γ ,

s.t. xi + δi ∈ [0, 1]d , x j + δ j ∈ [0, 1]d , (4)

where ϵ controls the magnitude of adversarial pairwise perturbations. By solving the above op-
timization problem, the attacker can achieve the attack goal, i.e., finding an optimal pair (δi ,δ j )
that can maximize the margin Δ(xi +δi ,x j +δ j ). The attack will succeed if Δ(xi +δi ,x j +δ j ) > 0.
The constraints in the above equation enforce that the generated adversarial examples lie in
the range of [0, 1]. Specifically, by following existing adversarial works [10, 38, 51], we use the
clipping function to ensure that the generated adversarial examples are in the valid range (i.e.,
[0, 1]).

By solving the above optimization problem in Equation (4), the attacker can craft adversarial
instance pairs to fool the metric learning models to make wrong pairwise predictions. In the above,
the goal of the attacker is to find an optimal adversarial perturbation pair (δi ,δ j ) that can maximize
the margin Δ(xi + δi ,x j + δ j ) = D (xi + δi ,x j + δ j ) − γ . In other words, the attacker in the above
launches the optimal attack by choosing the perturbed pair (xi + δi ,x j + δ j ) that maximizes the
distance function D (xi + δi ,x j + δ j ). And, this optimal attack is successful if Δ(xi + δi ,x j + δ j ) =
D (xi + δi ,x j + δ j ) − γ > 0, which means that the adversarial loss over the instance pair (xi ,x j ) is
equal to 1 (i.e., LA (xi ,x j ) = I[Δ(xi + δi ,x j + δ j ) > 0] = 1).

Optimization. Next, we discuss how to solve the optimization problem in Equation (4) to craft
adversarial instance pairs to fool the metric learning models. The solution here is based on the
projected gradient descent (PGD) method, and it is an iterative procedure. In each iteration, we

compare the L1 norm of
∂D (xi ,x j )

∂xi
with that of

∂D (xi ,x j )
∂x j

, and then perform a PGD-like update for

the instance pair (xi ,x j ) along the direction of the gradient with the larger L1 norm. Specifically,
in the (r + 1)-th iteration, (xi ,x j ) is updated as

xr+1
k = Πcl ip

�
�
xr

k + ξ · sign �
�
∂D (xr

i ,x
r
j )

∂xr
k

�
�
�
�
, (5)

k = arg max
{i, j }

⎧⎪⎨⎪⎩
















∂D (xr

i ,x
r
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∂xr
i















1
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∂D (xr

i ,x
r
j )

∂xr
j















1
⎫⎪⎬⎪⎭
. (6)

Here, x0
i = xi , x0

j = x j , and ξ is the step size that specifies the value changed by each iteration. In

each iteration, by using the element-wise clip function Πcl ip , we can guarantee that the updated

xr+1
k

resides in a valid range.
Discussion. Here, we discuss how to use the derived optimization solution (i.e., Equations (5)

and (6)) to craft adversarial instance pairs for the linear and nonlinear metric learning models.
The above proposed attack (in Equation (4)) is a general attack schema, which can not only attack
metric learning models but also can attack deep metric learning models. More specifically, the at-
tacker can use the gradient information to maximize the loss within a small perturbation region to
craft adversarial instance pairs. Next, we discuss how to use the gradient information to iteratively
calculate the adversarial pairs for the linear and nonlinear metric learning models.

— Based on Equations (5) and (6), we here discuss how to iteratively craft adversarial instance

pairs for linear metric learning models. For linear metric learning models,
∂D (x r

i ,x
r
j )

∂x r
i

and
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∂D (x r
i ,x

r
j )

∂x r
j

in Equation (6) are calculated as

∂D (xr
i ,x

r
j )

∂xr
i

= −
∂D (xr

i ,x
r
j )

∂xr
j

= 2W TW (xr
i − xr

j ), (7)

where W denotes the linear mapping of the linear metric learning models. Note that for
nonlinear metric learning models (i.e., deep metric learning models) that aim at training an L-
layer deep neural network to learn a set of hierarchical nonlinear mappings, we use {W l }L

l=1
to denote the weights (i.e., the hierarchical nonlinear mappings) of the trained L-layer neural
network (note that the biases are included in the weights with a corresponding fixed input
of 1 for simplicity), where W l represents the weight of the lth layer of the network. Since
the two gradients have the same L1 norm, we can update either xi or x j according to

xr+1
i = Πcl ip (xr

i + ξ · sign(2W TW (xr
i − x j )), (8)

xr+1
j = Πcl ip (xr

j + ξ · sign(−2W TW (xi − xr
j )). (9)

Here, Πcl ip is the element-wise clip function, and it can guarantee that the updated adver-
sarial pair resides in the valid range. Based on the gradients in Equations (8) and (9), for
the instance pair (xi ,x j ), we can derive its corresponding adversarial instance pair by using
Equations (5) and (6).

— Then, we talk about how to use Equations (5) and (6) to calculate the gradient information
to iteratively craft adversarial instance pairs for nonlinear metric learning models. For non-

linear metric learning models, the gradient
∂D (x r

i ,x
r
j )

∂x r
i

in Equation (6) is calculated as

∂D (xr
i ,x

r
j )

∂xr
i

=
∂( f L (xr

i ) − f L (xr
j ))T ( f L (xr

i ) − f L (xr
j ))

∂xr
i

= 2( f L (xr
i ) − f L (xr

j ))TW L
∂σ (W L−1 f L−1 (xr

i ))

∂(W L−1 f L−1 (xr
i ))
·W L−1

∂σ (W L−2 f L−2 (xr
i ))

∂(W L−2 f L−2 (xr
i ))
· · ·W 1, (10)

where f 1 (xr
i ) = xr

i and f 1 (xr
j ) = xr

j . Note that x0
i = xi and x0

j = x j . For the nonlinear

metric learning models, the set of hierarchical nonlinear mappings (i.e., the parameters of the

trained L-layer neural network) is denoted as {W l }L
l=1

. Let J l denote the matrix
∂σ (W l f l (x r

i ))

∂(W l f l (x r
i ))

,

and its entries J l [p,q] is defined as follows:

J l [p,q] =
∂σ (W l f l (xr

i ))[p]

∂(W l f l (xr
i ))[q]

=

⎧⎪⎪⎨⎪⎪⎩

1, if p = q and

(W l f l (xi ))[q] ≥ 0
0, otherwise.

Obviously, matrix J l is a diagonal matrix. The gradient
∂D (x r

i ,x
r
j )

∂x r
j

can be calculated in a

similar way as follows:

∂D (xr
i ,x

r
j )

∂xr
j

=
∂( f L (xr

i ) − f L (xr
j ))T ( f L (xr

i ) − f L (xr
j ))

∂xr
j

= −2( f L (xr
i ) − f L (xr

j ))TW L
∂σ (W L−1 f L−1 (xr

j ))

∂(W L−1 f L−1 (xr
j ))
·W L−1

∂σ (W L−2 f L−2 (xr
j ))

∂(W L−2 f L−2 (xr
j ))
· · ·W 1, (11)

where f 1 (xr
j ) = xr

j . Based on the gradients in Equations (10) and (11), for each instance pair

(xi ,x j ), we can derive its corresponding adversarial instance pair by using Equations (5)
and (6).
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Based on the above proposed attack, the attacker can generate the pairwise adversarial perturba-
tions that can be added to the original instance pairs to craft the adversarial instance pairs. Impor-
tantly, the robustness of the attacked metric learning model can be reflected by the magnitude of
the added pairwise adversarial perturbations. Specifically, the smaller the magnitude of the added
pairwise adversarial perturbations is, the less robust the learned metric learning model is.

3 CERTIFICATE ON THE PAIRWISE ADVERSARIAL LOSS

Note that the proposed AckMetric allows an attacker to generate adversarial instance pairs and
further introduce errors to the similarity prediction results of the attacked metric learning model.
More specifically, by following the proposed AckMetric (see Equation (4)), the attacker can craft
adversarial perturbations to change a similar instance pair to a dissimilar instance pair. To explore
the capability of an attacker to change the prediction results, in this section, we propose a theo-
retical framework to derive the upper bound of the pairwise adversarial loss. The derived upper
bound serves as a certificate that for a given metric learning model and test input, there is no at-
tack that can force the introduced error to exceed a certain value. Based on this certificate, we can
improve current metric learning models and make them more robust to adversarial perturbations.
In the following, we mainly focus on the derivation for the metric learning models that aim at
learning the linear mappings. For the nonlinear metric learning models, we leave the derivation
to the future work.

According to Definition 2.2, the pairwise adversarial loss LA (xi ,x j ) for an attacker A is deter-
mined by Δ(xi + δi ,x j + δ j ) = D (xi + δi ,x j + δ j ) − γ . In order to derive the upper bound of the
pairwise adversarial loss, we can first bound D (xi +δi ,x j +δ j ). The integration expression of the
distance function D (xi + δi ,x j + δ j ) can be written as follows:

D (xi + δi ,x j + δ j ) =

∫ xi+δi

xi

∂D (xi ,x j )

∂xi
dxi +

∫ x j+δj

x j

∂D (xi + δi ,x j )

∂x j
dx j + D (xi ,x j ). (12)

Then, based on Hölder’s inequality, the above distance functionD (xi+δi ,x j+δ j ) can be bounded
as

D (xi + δi ,x j + δ j ) ≤ sup
[xi ,xi+δi ]













∂D (xi ,x j )

∂xi












1
· 



δi





∞

+ sup
[x j ,x j+δj ]













∂D (xi + δi ,x j )

∂x j












1
· 






δ j








∞ + D (xi ,x j )

= D (xi ,x j ) + sup
[xi ,xi+δi ]×[x j ,x j+δj ]

{











∂D (xi ,x j )

∂xi












1
,












∂D (xi + δi ,x j )

∂x j












1

}
· 






δ j








∞

≤ D (xi ,x j ) + sup
[xi ,xi+δi ]×[x j ,x j+δj ]

ϵ ·
{











∂D (xi ,x j )

∂xi












1
,












∂D (x̃i ,x j )

∂x j












1

}
, (13)

where x̃i = xi + δi , ‖δi ‖∞ ≤ ϵ , and ‖δ j ‖∞ ≤ ϵ . Next, we bound the L1 norm of the gradient
∂D (xi ,x j )

∂xi
. Based on the fact that xi ∈ [0, 1]d , we have

ϵ ·












∂D (xi ,x j )

∂xi












1
= ϵ · ���2W TW (xi − x j )

���1
≤ ϵ · max

s ∈[−1,1]d

���2W TWs���1

= ϵ · max
s ∈[−1,1]d ,t ∈[−1,1]d

2tTW TWs, (14)

where the first equality follows the chain rule, the first inequality is derived based on the fact that
xi ∈ [0, 1]d , and the last equality follows from the identity ‖z‖1 = maxt ∈[−1,1]d tTz. In a similar
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way, we can bound the term ϵ · ‖ ∂D (xi+δi ,x j )
∂x j

‖1, where xi +δi ∈ [0, 1]d . Substituting Equation (14)

into Equation (13), we can get the following:

D (xi + δi ,x j + δ j ) ≤ D (xi ,x j ) + ϵ · max
s ∈[−1,1]d ,t ∈[−1,1]d

2tTW TWs . (15)

SinceW TW is a positive semi-definite matrix, we have

(t − s )TW TW (t − s ) ≥ 0, (16)

which means that tTW TWt + sTW TWs − 2tTW TWs ≥ 0. Then, we can further derive

max
s ∈[−1,1]d ,t ∈[−1,1]d

2tTW TWs ≤ max
t ∈[−1,1]d

tTW TWt

+ max
s ∈[−1,1]d

sTW TWs = max
t ∈[−1,1]d

2tTW TWt . (17)

Since the symmetric matrix W TW is semi-definite, the eigenvalues {λi ∈ R}di=1 of this matrix
are real. Assume that those eigenvalues are ordered as λ1 ≤ λ2 ≤ ... ≤ λd . Based on the spectral
theorem, we can find the corresponding orthonormal eigenvectors {ui ∈ Rd }di=1 of these eigenval-

ues, which satisfy W TWui = λiui and W TW =
∑d

i=1 λiuiuT
i . For vector t ∈ [−1, 1]d , it can be

written as t =
∑d

i=1 ciui with length | |t | |22 =
∑d

i=1 c
2
i , where ui is the found eigenvector. Based on

the above decomposition, the quadratic form tTW TWt can then be bounded as

max
t ∈[−1,1]d

tTW TWt = max
t ∈[−1,1]d

d∑
i=1

λic
2
i ≤ max

t ∈[−1,1]d
λ+max

d∑
i=1

c2
i = max

t ∈[−1,1]d
λ+max | |t | |22 , (18)

where t =
∑d

i=1 ciui and λ+max = λd denotes the maximum eigenvalue. In Equation (18), the

first equation is derived based on the fact that the quadratic form tTW TWt can be rewritten as

tTW TWt =
∑d

i=1 λic
2
i , and the first inequality follows that λ+max is the maximum eigenvalue, and

hence, λic
2
i ≤ λ+maxc

2
i . Since t ∈ [−1, 1]d , we can derive | |t | |22 ≤ d . Therefore, D (xi + δi ,x j + δ j )

can be further upper bounded as

D (xi + δi ,x j + δ j ) ≤ D (xi ,x j ) + 2dϵλ+max , (19)

where λ+max = λd . Finally, the pairwise adversarial loss LA (xi ,x j ) = I[Δ(xi + δi ,x j + δi ) > 0] for
the attacker A can be upper bounded by I[(D (xi ,x j ) + 2dϵλ+max − γ ) > 0].

4 DEFENSE AGAINST ADVERSARIAL PERTURBATIONS

In the above section, we provided the upper bound for adversarial attacks against the well-learned
metric models. Note that in the previous sections, we mainly focus on the scenarios where the
attacker aims at launching adversarial attacks to change a similar instance pair to a dissimilar pair
via adversarial perturbations. However, in practice, the normal training process of existing metric
learning approaches with their developed loss functions does not necessarily cause the derived
attack upper bound to be small, which leaves much room for the attacker to change the prediction
results. To address this challenge, we propose to incorporate the derived upper bound into these
developed metric learning losses as a regularizer, and let this bound guide the choice of the robust
distance metric. Without loss of generality, in the following, we take the widely adopted pairwise
constrained metric learning loss as an example, and discuss how to use the proposed defense
method to improve its robustness to adversarial perturbations.

Pairwise constrained metric learning loss function [6, 14, 58, 61, 72]. Suppose the associ-
ated class label for each instance xi ∈ X is denoted as yi ∈ {−1, 1}. For each pair (xi ,x j ), we can
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derive a pairwise similarity labelyi j = yiyj that denotes whether the two instances are similar (i.e.,
have the same class label) or not. If xi and x j are similar, yi j is equal to 1, otherwise it is equal to
−1. After constructing the similarity labels for all pairs, we can develop the following loss function
of metric learning to learn the distance metric

min
W ∈Rd∗d

L1 =
2

N (N − 1)

∑
i<j

max{0, 1 + yi j (D (xi ,x j ) − γ )}, (20)

whereγ is the unit margin. The above loss is developed based on the margin criterion. It guarantees
that the distance between xi and x j in the new feature space is smaller than the pre-defined margin
γ if xi and x j are similar, and larger than γ if xi and x j are dissimilar.

Defense mechanism. Here, we incorporate the derived attack upper bound into the training
process of the above loss and design a novel defense mechanism. Note that the derived upper
bound in Equation (19) only involves the largest eigenvalue λ+max = λd . According to Equation
(18), the equality in Equation (19) holds iff | |t | |22 = d and t/| |t | |2 = ud , where ud is the eigenvector

corresponding to the largest eigenvalue λd . With the fact that t ∈ [−1, 1]d , we can know that
| |t | |22 = d holds iff all the elements in t are −1 or 1. However, in this case, the equality t/| |t | |2 = ud

may not be satisfied, which means the derived upper bound in Equation (19) may not be the least
upper bound (i.e., the supremum). Thus, directly using the upper bound in the training process
cannot guarantee good defense performance. Considering that the supreme is affected by the top k
maximum eigenvalues ofW TW , where the value of k is dependent on the concrete form ofW TW ,
in our proposed defense mechanism, we incorporate the top k eigenvalues into the developed loss
function. Specifically, the final objective function for metric learning is formulated as

min
W ∈Rd∗d

L2 = L1 +

k∑
j=1

α jλd−k+j , (21)

where the first term L1 is defined in Equation (20), and the second term is used to enhance the ro-
bustness ofL1 to adversarial perturbations. In the second term, we introduce the top k eigenvalues
{λd−k+j }kj=1, and k and α j are tunable parameters.

Please note that the second term in Equation (21) can also be incorporated into the developed
loss of other metric learning models to improve their robustness against adversarial perturbations.
The key idea of the proposed defense mechanism is to reduce the attacker’s exploration space by
minimizing the attack upper bound.

5 DISCUSSION

In this section, we first describe how to generate adversarial similar sample pairs for truly dissim-
ilar sample pairs. Then, we discuss the situation where the attacker aims at crafting adversarial
perturbations to alter its classification result (i.e., the class label) based on our proposed AckMet-
ric. Lastly, we give other forms of the upper bound of the pairwise adversarial loss by using other
simple ways.

5.1 Adversarial Similar Instance Pairs

Note that in Section 2.3, we mainly focused on the scenarios where the attacker aims at changing
a similar instance pair to a dissimilar pair via adversarial perturbations. Specifically, to achieve
the attack goal, the attacker needs to solve the optimization problem in Equation (4) to find an
optimal pair (δi ,δ j ) that can maximize the margin Δ(xi + δi ,x j + δ j ). In this section, we discuss
the scenarios where the attacker aims at changing a dissimilar instance pair to a similar instance
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pair via adversarial perturbations. As for this scenarios where the attacker aims at changing a dis-
similar pair to a similar pair, this attack goal can be achieved by solving the following optimization
problem

min
| |δi | |∞+ | |δj | |∞<ϵ

D (xi + δi ,x j + δ j ) − γ ,

s.t. xi + δi ∈ [0, 1]d , x j + δ j ∈ [0, 1]d , (22)

where ϵ controls the magnitude of adversarial pairwise perturbations. With the fact that maximiz-
ing an objective optimization over its argument is equivalent to minimizing that function over
the same argument with a sign change, in these scenarios, we can easily conduct the analysis as
before.

5.2 Adversarial Attacks Against Metric Learning-Based Classification

Note that in Sections 2.3 and 5.1, we discuss how to change a similar instance pair to a dissimilar
pair and how to change a dissimilar instance pair to a similar pair, respectively. In practice, a
common application of metric learning is the classification task where an incoming unlabeled test
instance is classified by the majority label among its m-nearest (labeled) instances in the training
set. In this section, we discuss how to attack a well-learned metric model in a classification task.
More specifically, for a given test instance, we aim at crafting adversarial perturbations to alter its
classification result (i.e., the class label) based on our proposed AckMetric.

By following most of existing metric learning works [5, 6, 48, 57, 60, 71, 72], in this article, we
use the k-nearest neighbors algorithm as the classifier, based on which a given test instance is la-
beled by majority voting over itsm nearest instances in the training set. Specifically, to determine
the class label of a given test instance xk , we first need to calculate the distances between xk and
all the instances in the training set according to the learned distance metric. Then, we derive its
corresponding ranked list of the training instances X = {xi }Ni=1 sorted by the calculated distances.
Here, for a given test instance xk , the goal of the attacker is to alter its original predicted class label
via adversarial perturbations. We denote the ranked list of xk as xπk

= {xπk,1
, . . . ,xπk,r

, . . . ,xπk,N
},

where πk,1 denotes the index of the first closest training instance. Finally, the class label of xk
can be determined by majority voting over its top-m closest (nearest) training instances, i.e.,
xπk,1
,xπk,2

, . . . ,xπk,m
. To fool the learned metric model and alter the classification result of xk ,

we design the following attack strategy based on AckMetric: in the t th iteration, the attacker first
finds xk ’s M nearest training instances xπ t

k
= {xπ t

k,1
,xπ t

k,2
, . . . ,xπ t

k,M
} by calculating its distance

from each of the training instances, where M > m. Here, we use π t
k,1

to denote the index of the

first closest training instance derived in the t th iteration. Then, the distance between xk and each
of the selected M nearest instances {xπ t

k,1
,xπ t

k,2
, . . . ,xπ t

k,M
} is classified as positive if the selected

training instance shares the same label with xk , otherwise the distance is classified as negative.
Subsequently, we construct the following adversarial loss:

max
| |Δi | |∞<ϵ

M∑
r=1

(−1)I{yk==yt
k,r
}+1D

(
xk + Δi ,xπ t

k,r

)
, (23)

whereyk andyt
k,r

denote the class labels of xk and xπ t
k,r

, respectively. I{yk == y
t
k,r
} is the indicator

function that is equal to 1 if yk and yt
k,r

are equal, otherwise it is equal to 0. Finally, the targeted

test instance is updated by AckMetric using the gradient of the constructed loss in Equation (23),
which will increase the positive distances and decrease the negative distances. Based on this attack
strategy, the attacker can generate adversarial instance ˆx = xk +Δi to fool the learned metric model
and alter the classification result.
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5.3 Other Upper Bounds

In the above, we derive the upper bound of the pairwise adversarial loss by using convex relax-
ations. In fact, based on the spectral norm and the Frobenius norm, we can derive another two
simple bounds (i.e. the spectral bound and the Frobenius bound) that can be used to upper bound
the difference between D (xi +δi ,x j +δ j ) and D (xi ,x j ). And the spectral bound and the Frobenius
bound are respectively given as follows:

D (xi + δi ,x j + δ j ) ≤ D (xi ,x j ) + 4d (ϵ2 + ϵ )‖W TW ‖2, (24)

D (xi + δi ,x j + δ j ) ≤ D (xi ,x j ) + 4d (ϵ2 + ϵ )‖W TW ‖F , (25)

where ‖W TW ‖2 and ‖W TW ‖F denote the spectral and Frobenius norm of W TW , respectively.
In the experiments, we empirically compare the proposed training objective (i.e., Equation (21))
with those using the above two simple bounds as regularization terms. The detailed derivations
for the spectral bound and the Frobenius bound can be found in Section A of the supplementary
Appendix.

6 EXPERIMENTS

In this section, we first evaluate the performance of the proposed attack method (i.e., AckMetric) in
Section 6.1. Then, the effectiveness of the proposed defense mechanism is evaluated in Section 6.2.

6.1 The Performance of the Attack Method

Metric learning models. In this experiment, we adopt the following state-of-the-art metric learn-
ing models to evaluate the performance of AckMetric. LMNN [57] is a method that aims at letting
the k-nearest neighbors belong to the same class, while the instances from different classes are sep-
arated by a large margin. GMML [71] formulates the metric learning process as a smooth, strongly
convex optimization problem by using pairs of similar and dissimilar points. ITML [6] models
the metric learning problem in an information-theoretic setting by leveraging the relationship be-
tween the multivariate Gaussian distribution and the set of Mahalanobis distances. LowRank [72]
presents a similarity algorithm by encoding low-rank structures to the learning process to conduct
the sparse feature selection. SCML [48] aims at learning a sparse combination of locally discrim-
inative metrics that are inexpensive to generate. AML [5] first generates synthetic hard samples
based on GANs, and then uses these generated hard samples to boost the discriminability of the
learned metric learning model.

Datasets. The details of the adopted real-world datasets are described as follows: The Parkin-

son’s disease dataset [35] contains 22 features and 195 biomedical voice samples collected from 31
humans, in which 23 were diagnosed with Parkinson’s Disease. The Heart dataset and the Iono-

sphere dataset are two binary classification datasets from UCI machine-learning repository.2 The
MNIST 8v9 dataset [33] is a subset of the 784-dimensional MNIST set, and it contains 2,016 im-
ages. The AT&T face recognition dataset3 constains 400 grayscale images of 40 individuals in
10 different poses. The task of this face dataset is to determine whether two face images are from
the same identity or not. Additionally, we also adopt three UCI regression datasets (i.e., Energy,
Housing, and Concrete). For each of them, we first normalize the real-valued output of each
instance to [0,1], and then label the top 30% of the instances with the positive category and the
remaining instances with negative category. The statistical information of the adopted datasets
are described in Table 1.

2https://archive.ics.uci.edu/ml/datasets.html.
3https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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Table 1. The Statistics of the Adopted Datasets

Dataset Size Dimension Classes

Parkinson 195 22 2

Heart 303 23 2

Ionosphere 351 34 2

AT&T 400 92 × 112 40

8v9 2,016 28 × 28 2

Energy 768 8 2

Housing 506 13 2

Concrete 1,030 8 2

Fig. 1. The percentage of the successfully generated adversarial pairs.

Performance. We evaluate the performance of AckMetric through measuring the percentage
of the successfully generated adversarial pairs that can fool the target metric model on the above
eight real-world datasets. For each adopted dataset, we first randomly select a subset of instances
as the training set, and then randomly sample the testing instance pairs from the remaining in-
stances. The number of training instances and testing instance pairs for each dataset is provided
in Table 4 (in the supplementary Appendix). In this experiment, the parameters of each adopted
metric learning model are the same as that in its original work. Figure 1 reports the results for
the six models on the Parkinson’s disease dataset, the Heart dataset, the Ionosphere dataset, the
Energy dataset, the Housing dataset, and the Concrete dataset. Here, we vary ϵ from 0 to 0.7. From
this figure, we can see that the adopted models are vulnerable to adversarial perturbations, and the
proposed AckMetric can easily fool the six models. For example, when the parameter ϵ is set as 0.6,
the attacker is able to craft adversarial pairs against the adopted metric models with almost 100%
success on the Parkinson’s disease dataset. As for the two image datasets (i.e., 8v9 and AT&T), we
vary ϵ from 0.05 to 0.15 and report the results for the models GMML, LMNN, and SCML in Table 2,
from which we can see AckMetric still has good performance. By setting ϵ as 0.15, the attacker
can successfully generate adversarial pairs on 63% of the MNIST 8V9 testing data when the model
is SCML, and let GMML misclassify 54% of the AT&T testing data. All these results show that the
learned models using given metric learning methods are vulnerable to adversarial perturbations
and the proposed AckMetric can effectively generate adversarial pairs to fool well-learned metric
models.
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Table 2. The Percentage of the Successfully Generated

Adversarial Pairs on the Image Datasets

ϵ

Datasets Methods 0.05 0.075 0.1 0.125 0.15

GMML 0.38 0.39 0.39 0.44 0.44
8V9 LMNN 0.40 0.41 0.43 0.45 0.47

SCML 0.05 0.14 0.28 0.47 0.63

GMML 0.23 0.32 0.33 0.36 0.38
AT&T LMNN 0.25 0.27 0.33 0.36 0.36

SCML 0.25 0.32 0.43 0.47 0.54

Fig. 2. Adversarial dissimilar image pairs crafted by AckMetric when LMNN is adopted on the MNIST 8V9

dataset.

Inspection of adversarial dissimilar pairs. Here, we provide the visualization results for the
crafted adversarial dissimilar pairs that are generated by the proposed AckMetric. Specifically, for
each original (clean) similar instance pair, we aim at generating the adversarial perturbations that
is added to the original similar instance pair cause a metric learning model to make a false similarity
prediction (i.e., the adversarial dissimilar pair). In this experiment, we conduct experiments on the
two adopted image datasets (i.e., the MNIST and AT&T datasets), and the parameter ϵ is set as 0.01.
The reason is that by setting ϵ = 0.01, we can ensure that the pairwise adversarial perturbations
are imperceptible to humans. In this way, the added slight adversarial perturbations could not
be recognized by human eyes, and the attacker can avoid being detected. Meanwhile, the added
adversarial pairwise perturbations can construct adversarial instance pairs that largely change the
pairwise prediction results given by the metric learning models. Then, we can evaluate whether the
proposed AckMetric can easily generate adversarial instance pairs with imperceptible changes to
fool these metric learning models. Figure 2 shows some examples of the adversarial dissimilar pairs
generated by AckMetric when LMNN is adopted on the MNIST 8V9 dataset. For simplicity, we take
Figure 2(a) as an example to give an intuitive understanding of the generated dissimilar pairs. In
the bottom row of Figure 2(a), we show the original similar image pair of two digit images, which
is also treated as a similar pair by LMNN when there is no adversarial perturbations. In the middle
row of Figure 2(a), we show the adversarial perturbations that is added to the original similar pair
(in the bottom row of Figure 2(a)) to craft the adversarial instance pair to fool the trained metric
learning model. In the top row of Figure 2(a), we show the generated adversarial image pair that is
crafted by adding the adversarial perturbations in the middle row to the original similar image pair
in the bottom row. From this figure, we can observe that the adversarial dissimilar image pair in
the top row is almost the same as the original similar image pair in the bottom row and the added
adversarial perturbations are imperceptible to humans, but the crafted adversarial image pair can
successfully mislead LMNN to make wrong similarity predictions. We also visualize the adversarial
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Fig. 3. Adversarial dissimilar image pairs crafted by AckMetric when SCML is adopted on the AT&T dataset.

Fig. 4. Adversarial similar image pairs crafted by AckMetric when LMNN is adopted on the MNIST 8V9

dataset.

dissimilar pairs crafted by AckMetric when the SCML model is adopted on the AT&T dataset. Some
examples are provided in Figure 3, from which we can also observe the similar observation. The
reported visualization results in the Figures 2 and 3 also verify that current metric learning models
are not robust enough to adversarial perturbations and the proposed AckMetric can easily generate
adversarial pairs with imperceptible changes to fool these metric learning models.

Inspection of adversarial similar pairs. In addition to providing the visualization results of
the crafted dissimilar pairs, we also visualize the adversarial similar image pairs crafted by Ack-
Metric (with the optimization framework described in Section 5.1) when LMNN is adopted on the
MNIST 8V9 dataset. Here, ϵ is still set as 0.01. Figure 4 shows the crafted adversarial similar in-
stance pairs. For simplicity, we take Figure 4(a) as an example to give an intuitive understanding of
the generated similar instance pairs. In Figure 4(a), the image pair in the bottom row is the original
clean dissimilar pair, which are also correctly classified by LMNN as dissimilar. The image pair in
the top row of Figure 4(a) is the generated adversarial similar pair, which is crafted by the proposed
AckMetric and misclassified by LMNN as similar. The generated adversarial perturbations added
to the original dissimilar pair (in the bottom row of Figure 4(a)) to generate the adversarial similar
pair is shown in the middle row of Figure 4(a). From this figure, we can observe that the crafted
adversarial similar pair (in the top row of Figure 4(a)) is visually indistinguishable from the orig-
inal clean dissimilar pair (in the bottom row of Figure 4(a)). Importantly, the crafted adversarial
similar pair (in the top row of Figure 4(a)) can successfully fool LMNN, which further verifies the
effectiveness of the proposed AckMetric and that current metric learning models are not robust
enough to adversarial perturbations.

Crafting adversarial triplets. In addition to generating adversarial pairs, we also conduct
experiments to evaluate the robustness of current metric learning models by crafting adversarial
triplets based on the proposed AckMetric. The details about how to generate adversarial triplets
are described in Section C of the supplementary Appendix. Figure 5 reports some examples of the
adversarial triplets crafted by AckMetric when LMNN is adopted on the MNIST 8V9 dataset. In
this experiment, we randomly select half of the instances in the dataset to train LMNN, and the
parameter ϵ is set as 0.01. Take Figure 5(a) as an example. The image triplet in the bottom row
denotes the original triplet. For this original triplet, based on LMNN, we can derive that the left
image is more similar to the middle image than to the right image. The triplet in the top row is the
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Fig. 5. Adversarial triplets crafted by AckMetric when LMNN is adopted on the MNIST 8V9 dataset.

crafted adversarial triplet, which has the reverse relationship based on LMNN (i.e., the left image is
more similar to the right image than to the middle image). The perturbations added to the original
triplet to generate the adversarial triplet are shown in the middle row. As we can see, the crafted
adversarial image triplets are almost the same as the original image triplet and the changes are
imperceptible to humans, but the crafted adversarial triplets can successfully fool LMNN.

6.2 Evaluating the Proposed Training Objective

In this section, we evaluate the effectiveness of the proposed defense mechanism. Here, we still take
the widely adopted pairwise constrained metric learning loss (i.e., Equation (20)) as an example and
evaluate whether the proposed training objective (i.e., Equation (21)) can improve its robustness
to adversarial perturbations.

Baselines. Note that the proposed training objective (i.e., Equation (21)) is derived by adding
the upper bound to the pairwise constrained loss function (i.e., Equation (20)). In experiments, we
compare the proposed training objective with the following three different objectives:

— Normal training (NT-ML). The pairwise constrained lossL1 and no explicit regularization.
— Spectral norm regularization (Spe-ML). The pairwise constrained loss L1 and the regu-

larizer β1‖W TW ‖2 with β1 = 0.2 (i.e., L1 + β1‖W TW ‖2).
— Frobenius norm regularization (Fro-ML). The pairwise constrained loss L1 and the reg-

ularizer β2‖W TW ‖F with β2 = 0.2 (i.e., L1 + β2‖W TW ‖F ).

The robustness of the proposed training objective. In this experiment, we evaluate the
effectiveness of the proposed training objective in the metric learning based classification task.
Specifically, for each training objective, we first use the training data to learn a distance met-
ric. Then, we generate the adversarial instance for each of the instances in the test set based on
the attack strategy described in Section 5.2. Finally, we calculate the classification accuracy of
the adversarial instances. Here, the class labels of the adversarial instances are assigned based on
the KNN classifier. The higher the classification accuracy, the more robust the metric learning
model, which means the corresponding defense objective is more effective.

The parameter setting is detailed in Table 5 (in the supplementary Appendix). We tune the
number of the eigenvalues used in the certificated loss (i.e., Equation (21)), and Table 3 shows the
experimental results on the Parkinson’s disease, Ionosphere, and Heart datasets. From this table,
we can see that the metric learning model (i.e., NT-ML) without any defense mechanism achieves
the worst performance under attack. The testing accuracy of NT-ML on the Ionosphere dataset
is only 0.26 under attack, which further verifies the vulnerability of the learned metric models.
The results also show that the performance of the learned metric models under attack can be im-
proved after considering the derived upper bounds. Although the proposed training objective (i.e.,
Equation (21)) performs slightly worse than Spe-ML when there is no attack, it can achieve much
better performance under attack. When we incorporate the top three eigenvalues, the testing ac-
curacy of the proposed training objective on the Heart dataset is 0.64, while those of Spe-ML and
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Table 3. Classification Accuracy: Testing Accuracy Without

Attack/ Testing Accuracy Under Attack

Parkinson Ionosphere Heart

NT-ML 0.93/0.37 0.88/0.26 0.77/0.54

Spe-ML 0.97/0.54 0.89/0.64 0.83/0.57

Fro-ML 0.85/0.42 0.86/0.70 0.69/0.52

1 eigenvalue 0.89/0.51 0.82/0.71 0.79/0.59

3 eigenvalues 0.93/0.56 0.88/0.73 0.77/0.64

5 eigenvalues 0.95/0.54 0.88/0.71 0.80/0.62

Fro-ML are only 0.57 and 0.52, respectively. These results demonstrate that the proposed train-
ing objective (i.e., Equation (21)) can make metric learning more robust against adversarial
perturbations.

7 RELATED WORK

Existing metric learning models can be divided into two categories: linear and nonlinear. The lin-
ear models [5, 6, 18, 19, 21, 22, 26, 45, 53, 57, 60, 62, 63, 67, 70, 71] are constructed to learn a linear
mapping to project the original instances into a new feature space, while the nonlinear models (i.e.,
deep metric learning models) [7, 8, 16, 23, 24, 28, 29, 32, 34, 55, 56, 68, 73] usually adopt neural net-
works to capture the nonlinear structures of the instances. In both cases, the similarity degrees of
instances can be determined in the newly learned feature space. For example, [28] presents a new
loss and tuple mining strategy for deep metric learning using continuous labels. Reference [32] pro-
poses a new loss function (i.e., Group Loss) for deep metric learning that considers the similarity
between all samples in a mini-batch. Reference [56] designs a new ranking-motivated structured
loss for deep metric learning to learn discriminative embeddings with the setting of few-shot re-
trieval. Reference [34] proposes a deep variational metric learning framework to explicitly model
the intra-class variance and disentangle the intra-class invariance, namely, the class centers. Ref-
erence [24] introduces a Position-Dependent Deep Metric (PDDM) unit, which is capable of
learning a similarity metric adaptive to local feature structure and the learned metric can be used
to select genuinely hard samples in a local neighborhood to guide the deep embedding learning in
an online and robust manner. Reference [53] proposes a new angular loss to augment conventional
distance metric learning by encoding the third-order relation inside triplet in terms of the angle
at the negative point. Motivated by that the linear metric models often fail to produce reliable
distances on the ambiguous test pairs due to the different samplings between training set and test
set, the authors in [5] discuss how to generate adversarial pairs in the linear case to remedy the
sampling bias and facilitate robust metric learning. The recent work [7] considers the nonlinear
models (i.e., deep metric learning models), and proposes a new deep metric learning framework
(by using generative adversarial networks) to generate synthetic hard negative samples to train
deep metric learning models. However, this article fails to consider the adversarial side of the pro-
posed methods and does not study the robustness of the learned deep metric models to adversarial
perturbations. Additionally, the authors in [39] use metric learning as a tool to produce robust clas-
sifiers. Specifically, based on the observation that adversarial attacks can cause the internal deep
representation to shift closer to the “false” class, they propose to leverage the triplet loss of metric
learning to bring near both the natural and adversarial samples of the same class. However, in
our article, we study the robustness of metric learning itself. Thus, their problem setting is totally
different from ours.

This work is inspired by the recent developments of adversarial deep learning works. Among
these works, FGSM [11], PGD and its distributional variant [31], and CW [4] are the three most

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 95. Publication date: April 2022.



On the Robustness of Metric Learning: An Adversarial Perspective 95:19

prevalent attacks. Simultaneously, there also exists many defenses against adversarial samples. Ad-
versarial training is currently the most prevalent defense method [3, 38, 50]. However, a weakness
of adversarial training is that its defensive effectiveness is not theoretically guaranteed. Thus, some
researchers then try to develop provable defenses [46], where a certain prediction accuracy can be
guaranteed as long as adversarial perturbations are bounded. However, it is specially designed for
deep learning models, and cannot be applied to metric learning due to the symmetric positive semi-
definite property of the well-trained metric. Specifically, for the metric learning models studied in
this article, the matrixW TW in Equation (17) is a symmetric positive semi-definite matrix, whose
eigenvalues are real and non-negative. This property leads to the unique certificate and objective
for metric learning derived in Equations (19) and (21). While for [46], the matrix W Tdiaд{v} in
its Equation (5) is not necessarily semi-definite, which motivates [46] to use the semi-definite pro-
gramming relaxation for MAXCUT to approximate an upper bound for the optimization problem.

There are some existing adversarial works [74, 75] that aim at training robust deep neural net-
works. For example, [75] aims at synthesizing hard triplets to achieve faster convergence rates
and improve the global structure of the embedding space. The synthesized hard triplets contain
harder examples that cannot be well handled by the current embedding network where the irrele-
vant example is closer to the query than the relevant counterpart. Specifically, given that existing
works fail to generate hard triplets that really matter in globally optimizing the network, [75]
proposes an adversarial learning algorithm, in which a hard triplet generator and an embedding
network are jointly optimized in an adversarial fashion to mutually benefit each other. The authors
in [74] present a regularization mechanism for training deep neural networks by minimizing the
worse-case perturbation (WCP). In other words, [74] encourages the model to avoid putting
its decision boundary through the dense areas of data points such that the perturbations are least
likely to incur a large change to the outputs of the model. Specifically, [74] considers two forms
of WCP regularizations’ additive and DropConnect perturbations, which imposes additive noises
on network weights and make structural changes by dropping the network connections, respec-
tively. And the network is trained by minimizing the change of model predictions subject to these
perturbations. However, the problem settings of these works are significantly different from ours,
and they cannot be directly adopted in our setting. In our work, we aim at exploring the capa-
bility of the attacker to change the prediction results of the metric learning models. To achieve
this goal, we first design a novel attack method to show that existing metric learning models are
vulnerable to adversarial perturbations, and then present an upper bound for the pairwise adver-
sarial loss, which serves as a certificate for the pairwise adversarial loss and is incorporated into
the developed loss of metric learning as a regularizer to enhance the robustness of metric learning
against adversarial attacks. However, [74, 75] only focus on designing robust training mechanisms
for training robust deep neural networks (instead of metric learning models).

Migrating learning can migrate knowledge from the source domain to the target domain to help
the learning tasks in new environments. Metric migration learning aims at mitigating the insuffi-
cient label information issue for distance metric learning in the domain of interest (target domain)
by leveraging knowledge/information from other related domains (source domains) [37]. Metric
migration learning is able to find data embeddings that perform well on a testing domain, called
a target domain, by using labeled and/or unlabeled data in source domains [37]. Currently, many
metric migration learning works have been proposed [1, 15, 25, 30, 42, 47, 64–66]. For example, [15]
proposes a new deep transfer metric learning method to learn a set of hierarchical nonlinear trans-
formations for cross-domain visual recognition by transferring discriminative knowledge from the
labeled source domain to the unlabeled target domain. Given that samples in the source domain
might be extracted into different groups and the samples in the same group would have similar
intrinsic attributes, [64] proposes a metric transfer learning framework to encode metric learning
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in transfer learning. Reference [30] proposes a transfer metric learning method to infer domain-
specifc data embeddings for unseen domains, from which no data are given in the training phase,
by using knowledge transferred from related domains. Reference [37] groups metric transfer learn-
ing into different categories according to different settings and metric transfer strategies, such as
direct metric approximation, subspace approximation, distance approximation, and distribution
approximation. However, the problem settings in above works are significantly different from that
in our work. In addition, they also fail to study the model robustness to adversarial perturbations.

Confrontation training [12, 27, 36, 52, 54, 69] is the process of training a model to correctly clas-
sify both unmodified examples and adversarial examples. As an unsupervised learning model with
strong scalability, Generative Adversarial Networks (GANs) provide a confrontation training
method for deep networks, which solves tough issues for classical training methods [36]. In prac-
tice, the whole training process of confrontation learning is usually divided into the following
steps [69]: First, the generator network is pre-trained to capture the probability distribution of
the real data in the training set and transform the input random perturbation into new samples.
Then, the discriminator network observes both real and fake data to determine the authenticity of
this data. Then, the two networks alternately confront each other until convergence. The authors
in [12] propose LeakGAN to leak the features extracted by the discriminator to the generator in
the process of confrontation learning; thus, helping the generator obtain more useful information
to improve the quality of the generated text. Reference [52] proposes a principal component

analysis optimized generative adversarial networks (PCA-GAN). In the proposed method,
the original data are compressed to generate the input of the confrontation network, so that the
input data retain the characteristics of the original data to some extent, thereby improving the data
generation performance and reducing the training time cost. Reference [54] uses GANs to extract
the hidden features of fusion information objectively and effectively in the way of confrontation
learning. Reference [27] adopts an adversarial risk analysis perspective to model the confronta-
tion between attackers and defenders mitigating questionable common knowledge assumptions.
However, the above mentioned methods require making small perturbations to numerous entries
of the input vector, which is inappropriate for sparse high-dimensional inputs. Most importantly,
they cannot provide the theoretical guarantee.

8 CONCLUSION

In this article, for the first time, we studied the robustness of metric learning to adversarial per-
turbations. Specifically, we first proposed a novel projected gradient descent-based attack method
(i.e., AckMetric) to show that current metric learning models are vulnerable to adversarial pertur-
bations. To further explore the capability of the attacker to affect the prediction results of a learned
metric model, we also derived an upper bound for the pairwise adversarial loss, which serves as a
certificate that for a given metric learning model and test input, no attack can force the introduced
error to exceed a certain value. Moreover, we proposed to incorporate the derived upper bound
into the developed loss of metric learning as a regularizer to enhance the robustness of metric
learning against adversarial attacks. The experimental results not only show that current metric
learning models are vulnerable to adversarial perturbations, but also demonstrate the effectiveness
of the proposed defense mechanism (i.e., the proposed training objective).

APPENDICES

A THE DERIVATIONS OF OTHER UPPER BOUNDS

In Section 5.3, based on the spectral norm and the Frobenius norm, we propose another two simple
upper bounds (i.e., the spectral bound and the Frobenius bound). In the following, we give detailed
derivations for the proposed two simple upper bounds.
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Table 4. The Number of Training Instances and Testing Instance Pairs

Dataset #training instances #testing instance pairs

Parkinson 97 4,753

Heart 151 11,476

Ionosphere 175 15,753

Energy 384 6,555

Housing 253 2,775

A&T 240 780

Concrete 515 11,781

8v9 1,008 20,100

Spectral bound: Firstly, we rewrite the difference between D (xi + δi ,x j + δ j ) and D (xi ,x j ) as
follows:

D (xi + δi ,x j + δ j ) − D (xi ,x j ) = (xi + δi − x j − δ j )
TW TW (xi + δi − x j − δ j )

− (xi − x j )
TW TW (xi − x j ) (26)

= −(xi − x j )
TW TW (xi − x j ) + ((xi − x j ) + (δi − δ j ))

TW TW ((xi − x j ) + (δi − δ j ))

= 2(δi − δ j )
TW TW (xi − x j ) + (δi − δ j )

TW TW (δi − δ j ).

Then, based on the Cauchy–Schwarz inequality, we can further derive that

(δi − δ j )
TW TW (xi − x j ) ≤ ‖δi − δ j ‖2‖W TW (xi − x j )‖2

≤ ‖δi − δ j ‖2‖W TW ‖2
√
d, (27)

where xi ∈ [0, 1], and ‖W TW ‖2 is the spectral norm of W TW . Since the L2-norm satisfies the

triangle inequality, we also have that ‖δi − δ j ‖2 ≤ ‖δi ‖2 + ‖δ j ‖2 ≤ 2ϵ
√
d . Consequently, we can

derive that

2(δi − δ j )
TW TW (xi − x j ) ≤ 4dϵ ‖W TW ‖2. (28)

Similarly, the term (δi − δ j )
TW TW (δi − δ j ) can be upper bounded as follows:

(δi − δ j )
TW TW (δi − δ j ) (29)

≤ ‖δi − δ j ‖2‖W TW ‖2‖δi − δ j ‖2 ≤ 4dϵ2‖W TW ‖2.

Combining all of the above results (i.e., Equations (26), (28), and (29)), we obtain the following
upper bound:

D (xi + δi ,x j + δ j ) − D (xi ,x j ) ≤ 4d (ϵ2 + ϵ )‖W TW ‖2.

The above measure of vulnerability to adversarial pairs is based on the spectral norms ofW TW .
Frobenius bound: To make the training easier, the Frobenius norm is usually regularized in-

stead of the spectral norm [17]. Since ‖W TW ‖2 ≤ ‖W TW ‖F , we can derive another upper bound

D (xi + δi ,x j + δ j ) − D (xi ,x j ) ≤ 4d (ϵ2 + ϵ )‖W TW ‖F .

B THE NUMBER OF TRAINING INSTANCES AND TESTING INSTANCE PAIRS

For each of the adopted real-world datasets that are used to evaluate the performance of the pro-
posed AckMetric (Section 6.1), we provide the details about the number of training instances and
testing instance pairs in Table 4.
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Table 5. The Setting of Parameters

Training

learning rate 0.01

parameters

iterations 500
m 3

α j in certificated loss 1.0/k (j = 1..k)

Attack

step size 0.01

parameters

iterations 20
M 10

maximum perturbation 0.1 (normalized)

C CRAFTING ADVERSARIAL TRIPLETS

In the definition of the pairwise Robustness for Metric Learning (i.e., Definition 2.1), there is a
threshold γ that is used to judge whether the attacker can successfully craft an adversarial pair.
Based on this definition, we can also craft adversarial triplets by assigning a proper value to the
parameterγ . For a given triplet (xi ,x j ,xk ) wherexi is more similar tox j than toxk (i.e.,D (xi ,x j ) <
D (xi ,xk )), the attacker can craft an adversarial triplet by the following steps: Firstly, the attacker
sets the value of γ as D (xi ,xk ) (i.e., γ = D (xi ,xk ). Then, the attacker perturbs x j by adding an
optimal noise δ j , which satisfies | |δ j | |∞ < ϵ and D (xi ,x j + δ j ) > γ . Compared with the original
triplet (xi ,x j ,xk ), the crafted adversarial triplet (xi ,x j+δ j ,xk ) has the reverse relative comparison
relationship, i.e., the distance between xi and x j + δ j is larger that between xi and xk .

D PARAMETER SETTING FOR THE EVALUATION OF THE TRAINING OBJECTIVE

Table 5 shows the setting the parameters when evaluating the effectiveness of the proposed train-
ing objective in Section 6.2.

REFERENCES

[1] Mahya Ahmadvand and Jafar Tahmoresnezhad. 2020. Metric transfer learning via geometric knowledge embedding.

Applied Intelligence 51, 2 (2020), 921–934.

[2] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi.

2016. Measuring neural net robustness with constraints. In Proceedings of the NeurIPS.

[3] Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. 2018. Curriculum adversarial training. arXiv:1805.04807. Retrieved

from https://arxiv.org/abs/1805.04807.

[4] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings of

the IEEE Symposium on Security and Privacy.

[5] Shuo Chen, Chen Gong, Jian Yang, Xiang Li, Yang Wei, and Jun Li. 2018. Adversarial metric learning. In Proceedings

of the International Joint Conference on Artificial Intelligence.

[6] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. 2007. Information-theoretic metric learn-

ing. In Proceedings of the 24th international conference on Machine learning. ACM, 209–216.

[7] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou. 2018. Deep adversarial metric learning. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2780–2789.

[8] Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, Marcello Pelillo, and Laura Leal-Taixe. 2020. The group loss

for deep metric learning. In Proceedings of the European Conference on Computer Vision. Springer, 277–294.

[9] Xingyu Gao, Steven CH Hoi, Yongdong Zhang, Ji Wan, and Jintao Li. 2014. Soml: Sparse online metric learning with

application to image retrieval. In Proceedings of the 28th AAAI Conference on Artificial Intelligence. 1206–1212.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.

arXiv:1412.6572. Retrieved from https://arxiv.org/abs/1412.6572.

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.

arXiv:1412.6572. Retrieved from https://arxiv.org/abs/1412.6572.

[12] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Long text generation via adversarial

training with leaked information. In Proceedings of the AAAI Conference on Artificial Intelligence.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 95. Publication date: April 2022.

https://arxiv.org/abs/1805.04807
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572


On the Robustness of Metric Learning: An Adversarial Perspective 95:23

[13] Jamie Hayes and George Danezis. 2017. Machine learning as an adversarial service: Learning black-box adversarial

examples. arXiv preprint arXiv:1708.05207.

[14] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. 2014. Discriminative deep metric learning for face verification in the wild.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1875–1882.

[15] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. 2015. Deep transfer metric learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 325–333.

[16] Juhua Hu, De-Chuan Zhan, Xintao Wu, Yuan Jiang, and Zhi-Hua Zhou. 2015. Pairwised specific distance learning

from physical linkages. ACM Transactions on Knowledge Discovery from Data 9, 3 (2015), 1–27.

[17] Mengdi Huai, Chenglin Miao, Yaliang Li, Qiuling Suo, Lu Su, and Aidong Zhang. 2018. Metric learning from prob-

abilistic labels. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining.

[18] Mengdi Huai, Chenglin Miao, Yaliang Li, Qiuling Suo, Lu Su, and Aidong Zhang. 2020. Learning distance metrics

from probabilistic information. ACM Transactions on Knowledge Discovery from Data 14, 5 (2020), 1–33.

[19] Mengdi Huai, Chenglin Miao, Jinduo Liu, Di Wang, Jingyuan Chou, and Aidong Zhang. 2020. Global interpreta-

tion for patient similarity learning. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and

Biomedicine. IEEE, 589–594.

[20] Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. 2020. Malicious attacks against deep rein-

forcement learning interpretations. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 472–482.

[21] Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, and Aidong Zhang. 2020. Pairwise learning with differential

privacy guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence. 694–701.

[22] Mengdi Huai, Di Wang, Chenglin Miao, and Aidong Zhang. 2020. Towards interpretation of pairwise learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 4166–4173.

[23] Mengdi Huai, Hongfei Xue, Chenglin Miao, Liuyi Yao, Lu Su, Changyou Chen, and Aidong Zhang. 2019. Deep metric

learning: The generalization analysis and an adaptive algorithm.. In Proceedings of the International Joint Conference

on Artificial Intelligence. 2535–2541.

[24] Chen Huang, Chen Change Loy, and Xiaoou Tang. 2016. Local similarity-aware deep feature embedding. In Proceed-

ings of the Neural Information Processing Systems.

[25] Junchu Huang and Zhiheng Zhou. 2019. Transfer metric learning for unsupervised domain adaptation. IET Image

Processing 13, 5 (2019), 804–810.

[26] Sho Inaba, Carl T. Fakhry, Rahul V. Kulkarni, and Kourosh Zarringhalam. 2019. A free energy based approach for

distance metric learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining. 5–13.

[27] David Rios Insua, Roi Naveiro, Victor Gallego, and Jason Poulos. 2020. Adversarial machine learning: Perspectives

from adversarial risk analysis. arXiv:2003.03546. Retrieved from https://arxiv.org/abs/2003.03546.

[28] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and Suha Kwak. 2019. Deep metric learning beyond binary

supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2288–2297.

[29] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. 2018. Attention-based ensemble for

deep metric learning. In Proceedings of the European Conference on Computer Vision. 736–751.

[30] Atsutoshi Kumagai, Tomoharu Iwata, and Yasuhiro Fujiwara. 2020. Transfer metric learning for unseen domains.

Data Science and Engineering 5 (2020), 140–151.

[31] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial machine learning at scale. In Proceedings of the

International Conference on Learning Representations.

[32] Marc T. Law, Raquel Urtasun, and Richard S. Zemel. 2017. Deep spectral clustering learning. In Proceedings of the

International Conference on Machine Learning.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. In Proceedings of the IEEE.

[34] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou. 2018. Deep variational metric learning. In Proceedings

of the European Conference on Computer Vision. 689–704.

[35] Max A. Little, Patrick E. McSharry, Eric J Hunter, Jennifer Spielman, and Lorraine O Ramig. 2008. Suitability of

dysphonia measurements for telemonitoring of Parkinson’s disease. Nature Precedings (2008), 1–1.

[36] Xinyue Liu, Wenbo Tian, Wenxin Liang, and Hua Shen. 2019. Goal-directed sequence generation with simulation

feedback method. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation

Control Conference. IEEE, 287–294.

[37] Yong Luo, Yonggang Wen, Ling-Yu Duan, and Dacheng Tao. 2018. Transfer metric learning: Algorithms, applications

and outlooks. arXiv:1810.03944. Retrieved from https://arxiv.org/abs/1810.03944.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 95. Publication date: April 2022.

https://arxiv.org/abs/2003.03546
https://arxiv.org/abs/1810.03944


95:24 M. Huai et al.

[38] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep

learning models resistant to adversarial attacks. arXiv:1706.06083. Retrieved from https://arxiv.org/abs/1706.06083.

[39] Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray. 2019. Metric learning for adversarial

robustness. In Proceedings of the Advances in Neural Information Processing Systems. 480–491.

[40] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2017. Universal adversarial

perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1765–1773.

[41] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: A simple and accurate

method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2574–2582.

[42] Tongguang Ni, Xiaoqing Gu, Hongyuan Wang, Zhongbao Zhang, Shoubing Chen, and Cui Jin. 2018. Discriminative

deep transfer metric learning for cross-scenario person re-identification. Journal of Electronic Imaging 27, 4 (2018),

043026.

[43] Gang Niu, Bo Dai, Makoto Yamada, and Masashi Sugiyama. 2014. Information-theoretic semi-supervised metric

learning via entropy regularization. Neural Computation 26, 8 (2014), 1717–1762.

[44] Vahid Noroozi, Lei Zheng, Sara Bahaadini, Sihong Xie, and Philip S Yu. 2017. Seven: Deep semi-supervised verifica-

tion networks. arXiv:1706.03692. Retrieved from https://arxiv.org/abs/1706.03692.

[45] Yaxin Peng, Lingfang Hu, Shihui Ying, and Chaomin Shen. 2018. Global nonlinear metric learning by gluing local

linear metrics. In Proceedings of the 2018 SIAM International Conference on Data Mining. SIAM, 423–431.

[46] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses against adversarial examples.

arXiv:1801.09344. Retrieved from https://arxiv.org/abs/1801.09344.

[47] Rakesh Kumar Sanodiya and Jimson Mathew. 2019. A framework for semi-supervised metric transfer learning on

manifolds. Knowledge-Based Systems 176 (2019), 1–14.

[48] Yuan Shi, Aurélien Bellet, and Fei Sha. 2014. Sparse compositional metric learning.. In Proceedings of the Association

for the Advancement of Artificial Intelligence. 2078–2084.

[49] Jimeng Sun, Fei Wang, Jianying Hu, and Shahram Edabollahi. 2012. Supervised patient similarity measure of hetero-

geneous patient records. ACM SIGKDD Explorations Newsletter 14, 1 (2012), 16–24.

[50] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. 2017. Ensem-

ble adversarial training: Attacks and defenses. arXiv:1705.07204. Retrieved from https://arxiv.org/abs/1705.07204.

[51] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. 2017. The space of transferable

adversarial examples. arXiv:1704.03453. Retrieved from https://arxiv.org/abs/1704.03453.

[52] Chunzhi Wang, Pan Wu, Lingyu Yan, Zhiwei Ye, Hongwei Chen, and Hefei Ling. 2021. Image classification based

on principal component analysis optimized generative adversarial networks. Multimedia Tools and Applications 80,

6 (2021), 9687–9701.

[53] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. 2017. Deep metric learning with angular loss. In

Proceedings of the IEEE International Conference on Computer Vision. 2593–2601.

[54] Lei Wang, Zhu-Hong You, Li-Ping Li, Kai Zheng, and Yan-Bin Wang. 2019. Predicting circRNA-disease associations

using deep generative adversarial network based on multi-source fusion information. In Proceedings of the 2019 IEEE

International Conference on Bioinformatics and Biomedicine. IEEE, 145–152.

[55] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. 2019. Multi-similarity loss with gen-

eral pair weighting for deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 5022–5030.

[56] Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, and Neil M Robertson. 2019. Ranked list

loss for deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

5207–5216.

[57] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance metric learning for large margin nearest

neighbor classification. In Proceedings of the Conference on Neural Information Processing Systems.

[58] Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for large margin nearest neighbor classi-

fication. Journal of Machine Learning Research 10, 2 (2009), 207–244.

[59] Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples via the convex outer adversarial

polytope. In Proceedings of the IInternational Conference on Machine Learning.

[60] Pengtao Xie, Wei Wu, Yichen Zhu, and Eric Xing. 2018. Orthogonality-promoting distance metric learning: Convex

relaxation and theoretical analysis. In Proceedings of the IInternational Conference on Machine Learning.

[61] Eric P. Xing, Michael I. Jordan, Stuart J. Russell, and Andrew Y. Ng. 2003. Distance metric learning with application to

clustering with side-information. In Proceedings of the Advances in Neural Information Processing Systems. 521–528.

[62] Feiyu Xiong, Moshe Kam, Leonid Hrebien, Beilun Wang, and Yanjun Qi. 2016. Kernelized information-theoretic met-

ric learning for cancer diagnosis using high-dimensional molecular profiling data. ACM Transactions on Knowledge

Discovery from Data 10, 4 (2016), 1–23.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 95. Publication date: April 2022.

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.03692
https://arxiv.org/abs/1801.09344
https://arxiv.org/abs/1705.07204
https://arxiv.org/abs/1704.03453


On the Robustness of Metric Learning: An Adversarial Perspective 95:25

[63] Jie Xu, Lei Luo, Cheng Deng, and Heng Huang. 2018. New robust metric learning model using maximum correntropy

criterion. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[64] Yonghui Xu, Sinno Jialin Pan, Hui Xiong, Qingyao Wu, Ronghua Luo, Huaqing Min, and Hengjie Song. 2017. A

unified framework for metric transfer learning. IEEE Transactions on Knowledge and Data Engineering 29, 6 (2017),

1158–1171.

[65] Yonghui Xu, Bo Xu, Jingtang Zhong, Zhen Zhu, Pengshuai Yin, Huaqing Min, et al. 2018. A novel transfer metric

learning approach based on multi-group. In Proceedings of the 2018 IEEE International Conference on Robotics and

Biomimetics. IEEE, 2184–2189.

[66] Yonghui Xu, Han Yu, Yuguang Yan, Yang Liu, et al. 2020. Multi-component transfer metric learning for handling

unrelated source domain samples. Knowledge-Based Systems 203 (2020), 106132.

[67] Zhiyu Xue, Shaoyang Yang, Mengdi Huai, and Di Wang. 2021. Differentially private pairwise learning revisited.

IJCAI.

[68] Pengshuai Yang, Yupeng Zhai, Lin Li, Hairong Lv, Jigang Wang, Chengzhan Zhu, and Rui Jiang. 2020. A deep metric

learning approach for histopathological image retrieval. Methods 179 (2020), 14–25.

[69] Zhongliang Yang, Nan Wei, Qinghe Liu, Yongfeng Huang, and Yujin Zhang. 2019. GAN-TStega: Text steganography

based on generative adversarial networks. In Proceedings of the International Workshop on Digital Watermarking.

Springer, 18–31.

[70] Han-Jia Ye, De-Chuan Zhan, Xue-Min Si, Yuan Jiang, and Zhi-Hua Zhou. 2016. What makes objects similar: A unified

multi-metric learning approach. In Proceedings of the Advances in Neural Information Processing Systems. 1235–1243.

[71] Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. 2016. Geometric mean metric learning. In Proceedings of the Interna-

tional Conference on Machine Learning. 2464–2471.

[72] Mengting Zhan, Shilei Cao, Buyue Qian, Shiyu Chang, and Jishang Wei. 2016. Low-rank sparse feature selection

for patient similarity learning. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining. IEEE,

1335–1340.

[73] Dingyi Zhang, Yingming Li, and Zhongfei Zhang. 2020. Deep metric learning with spherical embedding. Advances

in Neural Information Processing Systems 33 (2020).

[74] Liheng Zhang and Guo-Jun Qi. 2020. Wcp: Worst-case perturbations for semi-supervised deep learning. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3912–3921.

[75] Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, and Xian-sheng Hua. 2018. An adversarial approach to hard

triplet generation. In Proceedings of the European Conference on Computer Vision. 501–517.

Received August 2020; revised August 2021; accepted November 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 95. Publication date: April 2022.


