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ABSTRACT 
With ubiquitous adoption of machine learning algorithms in web 
technologies, such as recommendation system and social network, 
algorithm fairness has become a trending topic, and it has a great 
impact on social welfare. Among diferent fairness defnitions, path-

specifc causal fairness is a widely adopted one with great potentials, 
as it distinguishes the fair and unfair efects that the sensitive at-
tributes exert on algorithm predictions. Existing methods based 
on path-specifc causal fairness either require graph structure as 
the prior knowledge or have high complexity in the calculation 
of path-specifc efect. To tackle these challenges, we propose a 
novel casual graph based fair prediction framework which inte-

grates graph structure learning into fair prediction to ensure that 
unfair pathways are excluded in the causal graph. Furthermore, we 
generalize the proposed framework to the scenarios where sensitive 
attributes can be non-root nodes and afected by other variables, 
which is commonly observed in real-world applications, such as rec-
ommendation system, but hardly addressed by existing works. We 
provide theoretical analysis on the generalization bound for the pro-
posed fair prediction method, and conduct a series of experiments 
on real-world datasets to demonstrate that the proposed framework 
can provide better prediction performance and algorithm fairness 
trade-of. 

CCS CONCEPTS 
• Information systems → Data mining. 
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1 INTRODUCTION 
Nowadays, more and more people use web technologies, such as 
recommendation system and social network, to seek information 
and make decision. Such trend makes algorithm fairness critical, 
since machine learning algorithms are widely adopted in these web 
technologies and ensuring the fairness has a great impact on both 
the social welfare and the platform interests [2–4, 7, 10, 11, 36, 37, 45, 
47]. Algorithm fairness aims to reduce or even eliminate unjustifed 
distinctions of individuals based on their sensitive attributes (e.g., 
gender and race) during the prediction [41]. Unfortunately, machine 
learning models constructed from the raw data are vulnerable to 
the unfairness risk due to the historical prejudices in the data. 
It is crucial for model designers to take algorithm fairness into 
consideration for long-term social welfare. 

In recent years, researchers have developed a variety of causal 
fairness defnitions to help machine learning models make fair pre-
dictions [16, 17, 21, 26, 28, 31, 32, 35, 39, 40, 42, 43], and one of them, 
path-specifc causal fairness [6, 26, 33], is adopted in this paper. Un-

der the defnition of path-specifc causal fairness, unfairness is 
viewed as the presence of unfair causal efect through the disallowed 
causal pathway that the sensitive attributes exert on predictions. In 
other words, a fair prediction satisfes path-specifc causal fairness 
if it eliminates the causal efect that the sensitive attributes assert 
on the prediction through disallowed causal pathways. Such a def-

nition provides the fexibility of tracing the unfairness, because in 
some scenarios, the sensitive attributes afect the decision along 
multiple pathways, and not all pathways are unfair. For example, in 
the online marketing, shown in Figure 1, gender and race (denoted 
as sensitive attribute �) are only allowed to afect the promotion 
through the preference, since it is reasonable to decide whether 
sending the promotion according to the preference. Under this fair-
ness rule, paths � → � and � → � → � are unfair paths and path 
� → � → � is a fair path. 
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Figure 1: Example of Online Marketing. 
To fulfll path-specifc causal fairness, some existing works di-

rectly calculate the path-specifc causal efect (PSE) [1, 27] along 
the unfair pathways, and minimize the efect simultaneously when 
maximizing prediction accuracy [26, 33]. Some other works correct 
the variables located on the unfair pathway by a latent inference-

projection method [6]. However, these existing works still face the 
following challenges: (1) Most of them require a pre-defned graph 
as the prior knowledge to calculate PSE. (2) The calculation of the 
path-specifc efect is complex, requiring the sequential ignorability 
assumption [18] to ensure the identifcation. (3) They all assume 
the sensitive attributes are root nodes in the causal graph. Namely, 
there are no other variables that afect the sensitive attributes. Few 
of them consider the case when the sensitive attributes are non-root 
nodes, which can be widely observed in real-world applications. 
For example, in the recommendation system, the item popularity is 
a sensitive attribute [10, 47], while this variable is a non-root node 
as it is afected by the item’s characteristics. 

In light of the above challenges, we propose a Causal Graph 
based Fairness Framework (CGF). To tackle the challenge of lacking 
the causal graph information, CGF integrates the causal graph struc-

ture learning and fair prediction, revealing the causal relationships 
among the observed variables. To simplify the PSE calculation, CGF 
imposes the fairness regularization at the graph level by restricting 
the existence of unfair edges in the learned causal structure. In this 
way, fair decisions are made based on the corrected observations 
reconstructed from the learned graph structure. Furthermore, the 
proposed CGF framework can straightforwardly generalize to the 
case where sensitive attributes are non-root nodes by introducing 
the latent variables to divide the fair and unfair efect fow. To the 
best of our knowledge, the proposed framework CGF is the frst 
work to consider such non-root node case. 

Generally speaking, the key of CGF framework is that the causal 
graph, which the model relies on to make predictions, reveals the 
fair causal paths of the original observation and eliminates the 
edges that are unfair by fairness regularization. To be specifc, the 
proposed CGF framework contains three components including 
graph structure learning, fairness regularization and label predic-
tion. The graph structure learning generates the causal graph that 
reveals the causal relations between observed variables. We use 
weighted adjacency to represent the causal graph and each ele-
ment in the adjacency matrix indicates the efect strength through 
the edge. The adjacency matrix is learned by minimizing the dif-
ference between the observed data (i.e., the data recorded in the 
dataset) and the data reconstructed based on the adjacency matrix. 
The second component, fairness regularization, further constraints 
the adjacency matrix by reducing the weights of the unfair edges, 
which controls the efect fow through the unfair edges in the causal 
graph. In other words, the fairness regularization guides the graph 
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Figure 2: Causal Graphs of Online Marketing Example. 
structure learning part by eliminating the unfair edges in the causal 
graph. With the above two components, the reconstructed data 
based on the learned causal graph is a correction of the original 
observed data with unfair efect eliminated. Then on top of the 
reconstructed data, the third component, label prediction, provides 
the fair predictions. 

To validate the efectiveness of CGF framework, we conduct 
a series of experiments on real-world datasets. On the real-world 
dataset, we compare the proposed framework with several baselines, 
and experimental results show that CGF can provide a better utility 
and fairness trade-of. Further, we conduct experiments on a real-
world recommendation dataset to evaluate the performance of CGF 
framework under the case of sensitive attributes as non-root nodes. 
The experimental results demonstrate that CGF framework can 
make comparable accurate recommendations while reducing the 
negative efect caused by sensitive attributes (i.e., item popularity), 
compared to existing recommendation methods. 

2 BACKGROUND 
Causal Graph. A causal graph is a directed acyclic graph (DAG) 
refecting the causal relationships between variables. Let G denote 
a causal graph, and G = ⟨� , �⟩, where � is the set of nodes repre-
senting all the variables, and � is the set of edges with each edge 
�� → �� describing the causal relation between variable �� and �� . 
The parents nodes of node �� , denoted as Π(�� ), and �� ∈ Π(�� ) if 
�� → �� . A node is a root node if it has no parent nodes. A path, 
also named as causal pathway, is defned as a sequence of unique 
nodes with edges between each consecutive node. The depth of a 
node in the graph is the number of arrows in the longest path to 
the root nodes. In the rest of the paper, we use the term “node”, 
“variable”, and “attribute” interchangeably. 
Path-specifc Causal Fairness. Path-specifc causal fairness en-

sures that the sensitive attributes are not allowed to afect the 
prediction along the unfair causal pathway. Path-specifc causal 
fairness distinguishes the causal pathways that start from sensitive 
variables to predicted variables into fair paths and unfair paths, and 
the goal of fair prediction is to reduce the unfair paths. Path-specifc 
causal fairness is closely related to other defnitions of fairness. It 
is equivalent to remove the direct and indirect discrimination [43]. 
When all paths starting from the sensitive variables are unfair, 
achieving path-specifc causal fairness is equal to demographic 
parity (i.e., removing disparate impact) [38]. 

Definition 2.1. (Observed Graph). Observed graph is the causal 
graph of the observed data. 

Definition 2.2. (Fair Graph). The causal graph satisfying the 
fairness criterion, and meanwhile, preserving the remaining structure 
of the observation graph, is the fair graph. 
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Definition 2.3. (Model Graph). Model graph is the causal graph 
that the decision model relies on. 

Figure 2 shows the observational graph, fair graph and model 
graph of the example of online marketing in Section 1. Figure 2a is 
the observational graph, which is the causal graph of the observed 
data. In the graph, the fair path � → � → � represents that it is 
acceptable, in terms of preference, that some people with certain 
race/gender are not ofered with promotion. While, the paths � → � 
and � → � → � are unfair, indicating that it is disallowed that 
the race/gender afects the promotion ofering directly or indirectly 
through ZipCode. Figure 2b is the fair graph, which describes the 
ideal causal relations. Compared with the observational graph, it 
eliminates the unfair paths. By removing the unfair paths, the fair 
graph refects that the diference of promotion ofering results 
across diferent race/gender groups is explained by the diferent 
preference levels among those groups. The rightmost sub-fgure 
is the model graph, which is the graph that the model relies on to 
predict. As shown in Figure 2c, the model takes �, � , and � as input, 
therefore, they all have directed arrows pointing to prediction � . 

From the above triple-graph perspective, under path-specifc 
causal fairness, the model graph should be consistent with the fair 
graph, but it is not. Therefore, our objective is to exclude the unfair 
path (the red dashed arrow in Figure 2c) for the decision, and retain 
the remaining causal pathways. 
Structure Causal Model (SCM). In SCM, each node in G is as-
sociated with a causal mechanism representing the generation 
of the current node by its parent nodes. It defned as: F = 
{�� : �� = �� (Π(�� )) + �� }, where �� ∈ � is the �-th node in the graph, 
Π(�� ) is the set of parent nodes of �� , and �� is the random noise. 
Graph Structure Learning. The problem of graph structure learn-

ing is to infer a directed acyclic graph (DAG) from data that refects 
the causal relationships among variables. In general, this can be 
summarized as solving the following problem: 

min� � (� (� ), �) subject to � (� ) ∈ DAG, (1) 

where� ∈ R� ×� 
is the adjacency matrix, � (� ) is the graph whose 

adjacency matrix is � , � (� (� ), �) is the scoring function mea-

suring the ftness between graph � (� ) and the data � . Searching 
DAG from data is known to be an NP-hard problem [30]. Recently, 
a continuous optimization based approach called NOTEARS [46] 
has been proposed to handle this problem by introducing a matrix 
exponential based DAG constraint: �� (�� ⊙� ) = � . The matrix ex-

1
ponential is given by the power series: �� ⊙� = 

Í∞ 

�! (� ⊙ � )� 
, 

�=0 
where the �-th term denotes the adjacency after � times walking 
on the graph, and � ⊙ � makes the element of adjacency matrix 
non-negative. The trace of the �-th term (� > 0) should be zero if 
the graph is acyclic, because a node cannot go back to itself after � 
times walking. Therefore �� (�� ⊙� ) = � indicates that the graph 
is acyclic, where � is the trace of frst term in the power series. 

3 METHODOLOGY 
To satisfy the path-specifc causal fairness, we propose a causal 
graph learning based fairness framework CGF. The key of CGF 
framework is to make the causal graph and the data that the model 
relies on close to the ideal fair graph. The proposed framework 

contains three components: graph structure learning, fair regular-

ization, and label prediction. The graph learning part aims to reveal 
the graph structure of the observation data, the fairness restriction 
targets at reducing the unfair paths, and the label prediction part 
outputs the fair predictions. These three components infuence each 
other in that: These three components are interdependent, as the 
fairness restriction guides the graph learning by reducing the unfair 
edges, and the fnal prediction is made based on the values of its 
parent nodes which is detected by the graph learning component. 
Overall, the objective function is: 

L = ��� + �� + �� , (2) 

where ��� is the graph learning loss, �� is the fairness restriction, 
�� is the label prediction loss. In the following sections, we will frst 
present the detailed implementation when the sensitive attributes 
are root nodes, provide the theoretical analysis about the general-

ization error, and then generalize the developed method to the case 
where sensitive attributes are non-root nodes. 

3.1 CGF Framework 
In the following three subsections, we will present the implementa-

tions of the three components in Eqn. (2). 

3.1.1 Graph Structure Learning. The objective of graph structure 
learning is to fnd the optimal causal graph that fts the observed 
data best. Motivated by the continuous optimization of causal graph 
structure learning [46], the loss of graph structure learning is: 

��� = � | |� − �˜ | |2
2 + �1 

� 
�� (�� ⊙� ) − (�� + �� + 1) 

�
2 
+ �2 | |� | |1, 

(3) 
where � ∈ R(�� +�� +1)×(�� +�� +1) 

is the adjacency matrix, and 
if its element ��, � ≠ 0, there exists an edge �� → �� with weight 
��, � indicating the efect strength. �� is the dimension of sensitive 
attributes, and �� is the dimension of other features. � is the ob-
served data, and �˜ is the reconstructed data based on � and � 
according to the causal graph. ⊙ is the element-wise matrix multi-

plication operator, �� ⊙� 
denotes the matrix exponential of� ⊙� , 

�� (·) is the matrix trace. � , �1, and �2 are the hyper-parameters. 
The frst term in Eqn. (3) measures the ftness of the causal graph 

by calculating the diference between the observed data and the 
data reconstructed from the graph. The second term is the directed 
acyclic graph (DAG) constraint, which ensures the learned graph 
does not contain any cycle [46]. The third term is the ℓ1 norm of 
the adjacency matrix which makes the learned graph to be sparse. 
The details of data reconstruction (i.e., �˜ ) and the DAG constraint 
are described as follows. 
Cascade Data Reconstruction. In data reconstruction, each node 
is reconstructed based on its parents’ reconstructed values. Eqn. (4) 
shows the reconstruction of node �� : 

�̂� = �� (Π̂ (�� )� [�Π, �]), (4) 

ˆ 

nodes after reconstruction. �Π is the index set of �� ’s parent nodes. 
� [�Π, �] is the elements in the adjacency matrix � whose row 
indices are in �Π and column indices are � . It is noticed that the 
reconstruction of a node is based on its parents’ reconstructed 
values, instead of the observed values, because the observed values 

where �� (·) is the causal mechanism of node �� , Π(�� ) is �� ’s parent 
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Figure 3: Cascade Data Reconstruction Example. 
contain unfair efect if the parent nodes locate in the unfair paths. 
To satisfy this, the parent nodes should be reconstructed before 
the child nodes, thereby the data reconstruction follows a cascade 
reconstruction procedure with ascending order of depth. 

We use a graph with fve nodes (Figure 3), to illustrate the cascade 
data reconstruction. In the fgure, � is the sensitive attribute, �2, 
�3, �4 are regular features, and � is the class label. The red arrows 
denote the unfair edges. The reconstruction order decided by the 
depth is: � & �4, �2, �3, � and the reconstruction procedure is: 

Root Nodes: �ˆ = �; �ˆ4 = �4; 
Depth 1 node: �ˆ2 = �1,2� + �4,2�4 + �2; 

(5)

Depth 2 node: �ˆ3 = �1,3� + �4,3�4 + �2,3�ˆ2 + �3; 
Depth 3 node: �ˆ = �1,5� + �4,5�4 + �3,5�ˆ3 + �� , 

where ��, � is the element of the �-th row and the �-th column in adja-
cency matrix � , �� is the intercept term, and �˜ = [�,ˆ �ˆ2, �ˆ3, �ˆ4, �ˆ ]. 
In this example, we adopt the linear function as the causal mecha-

nism, and it can generalize to the more complex functions, such as 
neural network by changing �� (·) in Eqn. (4). 
DAG Constraint. The second term in Eqn. (3) is the directed acyclic 
graph (DAG) constraint, which ensures that there is no cycle in 
the learned graph [46], as a node cannot afect itself. The trace of 
adjacency matrix’s exponential is adopted in the second term to 
measure the graph acyclic. 

3.1.2 Fairness Regularization. The goal of fairness regularization 
is to reduce the unfair edges, so that the sensitive attributes pass 
less efect through the unfair path. As mentioned previously, the 
element in the adjacency matrix not only represents the causal 
direction, but also indicates the efect strength along this edge. 
To reduce the unfair edges, the elements in the adjacency matrix 
associate with unfair edges should be close to zero. Therefore, we 
apply the following fairness regularization on the adjacency matrix: 

�� = � | |� ⊙ �� | |1, (6) 

where ⊙ is the element-wise matrix multiplication, � is the adja-
cency matrix, and �� is the fairness mask with the same dimension 
as � . The element of the �-th row, �-th column of �� is set as 1 if 
edge �� → �� is unfair. More details related to the construction of 
the fairness mask are in the appendix. | | · | |1 is the ℓ1 norm. The fair-
ness regularization �� minimizes the total strength of efect on the 
unfair edges, which reduces the efect fow along the unfair paths. 
By regularizing on the adjacency matrix, fairness regularization is 
able to eliminate the unfair path � → � and � → �2 in Figure 3. 
Therefore, with the fairness regularization, the reconstructed data 
�̃ is a correction of the original data � with unfair efect reduced. 
Fairness Mask Construction. Our proposed method only requires 
prior knowledge of what attributes are allowed or not allowed to 
construct the fairness mask �� . For example, in online marketing 
example, Figure 2, the prior knowledge is that Race/Gender � is 

only allowed to afect � through Preference � . Therefore, in the 
fairness mask, in the �-th column, only the �-th row is set to be 
0, and all others in the �-th column are set as 1, if Race/Gender is 
the �-th variable, and Preference is the �-th variable. It means that 
except Race/Gender � → � Preference, all other paths including 
Race/Gender � → � or � → � are all unfair paths. 

3.1.3 Label Prediction. Since the unfair efect has been reduced 
in the reconstruction data, the prediction based on the obtained 
reconstruction is fair. The label � is predicted as: �̂ = ��� , where ˜ 

�� is the last column of � , which indicates the existence of the 
edges and their efect strength starting from other nodes to � and 
�̃ is the reconstructed data. Accordingly, the prediction loss is: 
�� = | |� − �̂ | |

2

2
. 

3.1.4 Generalization to Nonlinear Causal Mechanism. In Eqn. (5) 
and label prediction, the adopted linear causal mechanism can 
generalize to more advanced functions by modifying the cascade 
data reconstruction and the adjacency matrix. Assume we choose 
neural network (NN) as the causal mechanism, the reconstruction 
of node �� is: �ˆ� = � � � (�� � � ), where � � � (·) represents the 

� � � 
neural network, � � � ∈ R(�� +�� )×�� � 

is the parameter of the 
� 

frst linear layer in � � � (·), �� � is the dimension of the frst hidden 
� 

layer. Namely, to use the NN mechanism, replace the linear model 
in Eqn. (5) with the NN whose frst layer is the linear layer and all 
those NNs share the common hidden layers, as suggested in [22]. 
The adjacency matrix is constructed based on the parameter in the 
frst linear layer. Specifcally, each element in the adjacency matrix 
� is calculated as: ��, � = | |� � � [ �, :] | |2

2
, where � � � [ �, :] is the 

� � 
�-th row in �

�
� � 

. 

3.1.5 Initialization and Optimization. When the sensitive attributes 
are root nodes, the overall loss function is: � 
L = | |� − �ˆ | |2

2 + � | |� − �˜ | |2
2 + �1 �� (�� ⊙� ) − (�� + �� + 1) 

�
2 

+�2 | |� | |1 + � | |� ⊙ �� | |1, 
(7) 

where �ˆ is defned in Eqn. (6), and �˜ is the reconstruction of � via 
the cascade data reconstruction presented in Section 4.1.1. 
Initialization. As mentioned previously, the cascade data recon-

struction requires acyclic graph. To satisfes this, we can initialize 
the adjacency matrix by the following two ways: (1) adopt the prior 
knowledge about the basic acyclic graph; (2) pre-train the parameter 
by the following objective function: 

| |� − �ˆ | |2
2 + � | |� − �˜ 

′
| |
2

2 + �1 

� 
�� (�� ⊙� ) − (�� + �� + 1) 

�
2 
, (8) 

where �̃ ′ is the data reconstructed by the observed data. Each node

′ ′ 
�� in �̃ is calculated as: �̂� = �� (Π(�� )� [�� , �]), where Π(�� ) is 
the node �� ’s observed value, and � [�� , �] is the same as the one 
in Eqn. (4). Eqn. (8) replaces the cascade data reconstruction �̃ in 

′ 
Eqn. (7) with regular data reconstruction �̃ , which not strictly 
requires acyclic graph. 
Optimization. We adopt the Adam [19] to optimize both Eqn. (8) 
and Eqn. (7). Besides, at each iteration of optimizing Eqn. (7), the 
adjacency matrix � is forced to be acyclic. 
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Figure 4: Sensitive Attributes as Non-root Nodes. 

3.2 Theoretical Analysis 
Here we provide the theoretical analysis about the generalization 
error. Following the results in [22, 24], we have: 

Theorem 3.1. Suppose the data � follow the Gaussian distribu-
tion, the generalization error of the proposed fair classifer ℎ� on the 
observed dataset, which is denoted as � D

�� 
, satisfes the following 

inequality with probability 1 − � , ∀� > 0 
ℎ 
: 
� � √ � 1 

2 

� D
�� 2 log 

� 
2 

√�1 �2 
ℎ� 

≤ | |� − �̃ | |2 
� �� + � � + 

�� 
+ √ 

�� 
+ �3 

(9)
4 � � 

+4�̂ D� + 1 R��� + �4 (R�1 + R� ) + log( 8 ) + �5,� � ℎ� 

where D�� is the distribution of the observed data and � is its observed 
sample. �˜ is the reconstructed data by cascade reconstruction, and ∫ 
its distrubution is denoted as D� . � D = ℓℎ (�, �)� D(�, �)���� ,

ℎ D 
is the expected error on the underlying space D, and ℓℎ (�, �) =∫ 

�(�, ℎ(�, �))� (� |�, �)�� is the expected error on a single point 
� 

(�, �). �̂D� 
is the empirical error of classifer ℎ� on D� . R��� andℎ� 

R�1 are the value of DAG constrain, ℓ1 regularization, which are the 
last two terms in Eqn. (3). R� is the value of fairness regularization 
defned in Eqn. (6). � , �1 ∼ �5 are constants. 

Theorem 3.1 give an upper bound of the generalization error 
of the fair classifer on the observed dataset. The upper bound 
shows that the generalization error is related to the qualities of the 
reconstruction and the classifer trained on the fair dataset, which is 
exactly the two terms in our objective function. The reconstruction 
part in Theorem 3.1 also represents the fairness level, since the fairer 
the data is, the fairer the dataset is, the smaller the reconstruction 
error. Detailed proof of Theorem 3.1 is in the Appendix. 

3.3 Generalization to Non-Root Node Case 
Most of the existing works consider sensitive attributes such as age, 
gender, and race that can only be the root nodes in the causal graph. 
However, in some real-world applications, sensitive attributes are 
afected by other variables. For example, in the recommendation 
system, the item popularity should not afect whether this item to be 
recommended [10, 47], for the purpose of recommendation diversity. 
Figure 4 shows causal graph of the recommendation example where 
� and � represent user and item respectively, � denotes the item 
popularity and � denotes whether the user click the item. In this 
example, the item popularity � is the sensitive attribute, and it is 
the non-root node as it is afected by the item’s characteristics. 
Challenge. When the sensitive attributes � are non-root nodes, 
their parent nodes Π(�) also contain the information about those 
sensitive nodes. If the parent nodes have other causal pathways 
to the label node � not passing the sensitive node, the informa-

tion related to the sensitive attributes can still reach the label node 
through those paths. Therefore, the proposed framework in Sec-
tion 3.1 requires slight modifcation to handle this case. 

	𝑍!	𝑍"

Y P

	𝑍#

	U 	I

Figure 5: Causal Graph with Efect Diversion. 

Efect Diversion. To address the challenge, two latent nodes, �� 
and �� , are added between the parent nodes and the sensitive nodes 
to divert the efect fow. This allows the fairness regularization 
proposed in the previous section to be applied to the unfair fow. 
�� controls the efect from the sensitive attributes’ parent nodes to 
the label node passing through the sensitive attributes, while �� 
controls the efect from the parent node to the label node not passing 
through the sensitive attributes. Thus, the paths from the parent 
nodes Π(�) to the label node � are divided into two categories, one 
containing only �� and the other containing only �� . By separating 
�� and �� , the fairness regularization can be directly applied to the 
paths containing �� , as no other paths are exposed to information 
leakage risk. When there are multiple non-root sensitive attributes, 
the same procedure is applied to each one of them. 

Figure 5 shows the causal graph with efect diversion in the 
recommendation example, where the latent node �� is user em-

bedding, �� is the item popularity related embedding and �� is the 
clicking variable � related embedding. The parent node � afects 
item popularity only through �� , and other paths from � to � all 
pass through �� . The red arrows indicate the unfair paths where 
the fairness regularization is applied on. 
Objective Function. In Eqn. (3), the reconstruction part requires 
the variables’ observed values, while in this case latent nodes lack 
that. To address this issue, we notice that to ft the graph with efect 
diversion, �� and �� should have less overlapped information. To 
fulfll this, the orthogonal regularizations on �� and �� are adopted 
in the graph structure learning part to ensure the separation of the 
efect fow. Overall, the objective function is: 

IÍ (� ) (� )L = | |� − �̂ | |2
2 + � | |� − �̃ | |2

2 + �� ��� (�� , � )� 
�=1� �

2 
+�1 �� (�� ⊙� ) − (�� + �� + 1) + �2 | |� | |1 + � | |� ⊙ �� | |1, 

(10) 
where I is the number of total items. ��� (·, ·) denotes cosine sim-

(� ) (� )
ilarity, which ensures the orthogonality between � and � ,� � 
and other types of correlation measure such as HSIC [12] can be 
adopted. Compared with Eqn. (2), the graph structure learning part 
is modifed to satisfy the efect diversion design. In the recommen-

dation system example, | |� − �̂ | |2
2 is the clicking prediction error, 

and | |� − �̃ | |2
2 is the error of predicting the item popularity. 

4 EXPERIMENT 
We experiment on two real-world datasets, Adult Dataset (one of the 
commonly adopted datasets when evaluating algorithm fairness) 
and MovieLens Dataset (one of the popular datasets in recommen-

dation area) to confrm: (1) The proposed CGF framework works 
on both cases where sensitive attributes are root or non-root nodes. 
(2) Our proposed framework provides a better trade-of between 
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utility and fairness. More details regarding implementations are 
listed in the Appendix. 

4.1 Experiment on Adult Dataset 
Dataset. Adult dataset1, is a commonly adopted dataset for fairness 
evaluation. In this dataset, there are total 48842 individuals and each 
has 14 attributes regarding their demographic information, jobs, 
and level of education. The class label is binary indicating whether 
an individual’s income is above or below 50� . The objective is to 
predict the income class given an individual’s attributes. 
Unfair Paths. As suggested in [26], the direct path “Gender” → 
“Income”, and the paths containing edge “Gender” → “Married” are 
all unfair. Namely, the gender should not direct afect the income 
and meanwhile it is not allowed to afect income through marital 
status. 
Baselines. The logistic regression model (LR) and neural network 
(NN) constructed from raw data is adopted as the baseline. We also 
adopt the Fair Inference (FIO) [26] and PSE-DR [43] as the baselines. 
FIO method directly minimizes the path-specifc causal efect from 
sensitive attributes to the label nodes through the unfair paths. The 
causal graph used in FIO is the same as the one in the original 
paper [26], and is shown in the appendix. PSE-DR is a two-step 
method which frst learns the causal graph and then trains the 
classifer based on the corrected data generated from the learned 
causal graph. Our proposed models are denoted as LR-CGF and 
NN-CGF, which take the linear logistic regression model and neural 
network as the causal mechanism function, respectively. 
Data Pre-processing for Baseline PSE-DR. To run the code 
of baseline PSE-DR

2 
provided by the authors in [43], the Adult 

datasets requires additional stratifcation step to reduce the num-

ber of categories of each variable. The procedure of each vari-
able is: higher_edu: higher_edu: ⌊higher_edu/10⌋; high_hours: 
⌊high_hours/20⌋; managerial_occ: ⌊managerial_occ/5⌋; gov_jobs: 
⌊gov_jobs/5⌋; age: ⌊age/20⌋; native_country: ⌊native_country/5⌋, 
married: ⌊married/3⌋, where ⌊�⌋ denotes the foor of the scalar � , 
which is the largest integer � , such that � <= � . 
Evaluation Metrics. Due to label imbalance, Area Under the ROC 
Curve (AUC) is adopted as the utility metric. The higher the AUC 
value, the better the utility. Following [26], we adopt the path-

specifc causal efect (PSE) [27, 29] to measure the fairness. The PSE 
value may have a negative value indicating the negative efect. The 
closer the PSE value is to 0, the fairer the model is. 

4.1.1 Result Analysis. Table 1 summarizes the results of diferent 
methods on Adult dataset with 5-fold cross validation. It is observed 
that compared with baseline methods, our proposed methods are 
fairer and meanwhile have better utility. On this dataset, when 
evaluated on the test set randomly split from the original dataset, 
there is a trade-of between fairness and utility. The baseline LR 
has the highest AUC but it is unfair with the highest PSE value 
among all methods. Compared with LR, the methods with fairness 
design sacrifce the utility for fairness. Among the methods with 
fairness design, our proposed methods LR-CGF and NN-CGF have 
a better trade-of between utility and fairness, which validates the 
efect of regularizing the fairness at the graph level. We also notice 
that the method with nonlinear causal mechanism performs best in 

1
https://archive.ics.uci.edu/ml/datasets/adult 

2
https://www.yongkaiwu.com/publication/zhang-2017-causal/zhang-2017-causal.zip 
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Method AUC (⇑) PSE (⇒ 0) 

LR 0.712 ± 0.005 3.508 ± 0.005 
NN 0.721 ± 0.012 2.068 ± 0.223 
FIO 0.505 ± 0.007 1.048 ± 0.003 

PSE-DR 0.686 ± 0.018 0.450 ± 0.151 
LR-CGF 0.507 ± 0.099 0.925 ± 0.073 
NN-CGF 0.689 ± 0.012 −0.198 ± 0.109 

Table 1: Results on Adult Dataset. ⇑: the higher the better, 
and ⇒ 0: the closer to 0, the better. 

terms of both utility and fairness. The reason is that compared with 
linear causal mechanism, the neural network can reconstruct the 
data better while ensuring fairness. This observation also confrms 
Theorem 3.1 that the better the reconstruction is, the better the 
performance is. 

We further experimentally explore the relationship between the 
reconstruction and fairness regularization. We fx one part’s hyper-

parameter and tune the other one. Figure 6 reports the results of 
NN-CGF. From Figure 6a and 6b, it is observed that, with the in-

creasing strength of reconstruction, it improves the accuracy but 
reduces the fairness. The fairness regularization has an opposite 
efect with reconstruction part. As shown in Figure 6c and 6d, the 
fairness regularization improves the model fairness but reduces util-

ity. Overall, the reconstruction part and the fairness regularization, 
together, control the trade-of between model utility and fairness. 
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Figure 6: Efects of Reconstruction and Fairness Regulariza-
tion. 

4.2 Experiment on Recommendation Dataset 
In this section, we conduct the experiment on real-world recom-

mendation data to show that, in the case when sensitive attributes 
are non-root nodes, our proposed framework is able to provide fair 
predictions with high utility. 
Dataset. The MovieLens dataset [13] is adopted to validate the 
performance of CGF. Following the settings in [10], the sensitive 
attribute item popularity is added to each item, and for each item, 
the value of item popularity is 1 if its total exposure is top 20%, oth-

erwise 0. The item popularity is a non-root node since it is afected 
by item characteristics. For each user, we sort their interactions 
according to the timestamp, and the last interaction is put into the 
test set, and others are in the training set. The validation set is the 
last interaction of each user in the training set. 

3685



Path-specific Causal Fair Prediction via Auxiliary Graph Structure Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

𝑍! 𝑍" 𝑍# 𝑃

First laryer: 

𝑍:

𝑍×𝑊" 𝑍×𝑊#

shared common 
layers

Rating Popularity

shared common 
layers

∈ ℝ$×	(()!"#$*$)
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Figure 8: Details of �� and �� in the frst layer. 

Baselines. We adopt Matrix Factorization (MF) [20], General-

ized Matrix Factorization (GMF) and Multiple Layer Perceptron 
(MLP) [14] as our baselines. GMF and MLP are also the base models 
of our proposed framework, and we name our methods as GMF-CGF 
and MLP-CGF accordingly. 
Neural Network Structure of CGF. Figure 7 shows the neural 
network structure of MLP-CGF, where � is the concatenation of 
user embedding �� , rating related item embedding �� , popularity 
related item embedding �� and popularity � . The weight �� and 
�� in the frst layer control the fow of information into rating 
prediction and popularity prediction, separately. After the frst 
layer, the ratings and popularity tasks shared several common 
layers, followed by their specifc prediction layers. 

The weighting matrices �� and �� control the information fow 
from � to rating and popularity prediction, respectively. The de-
tails of �� and �� are shown in Figure 8. The dimension of �� 
and �� are both (3����� + 1) × ��ℎ��� , where ����� is the em-

bedding size, ��ℎ��� is the dimension of the frst layer in shared 
common layers. Each of the weights contains four parts that are �� 
related weights, �� related weights, �� related weights and � related 
weights. the � related weights � � in �� is zero matrix because in � 
popularity prediction, ground-truth popularity value should be the 
input. Notice that �� and �� should not afect item popularity, we 
also minimize the norm of ��

� 
and ��

� 
. Since the paths �� → � and 

� → � are unfair as shown in Figure 5, the fairness regularization� � 
is: �� = � | |� � | |1 + | |� � | |1 .

� � 
Evaluation Metrics. In terms of utility/accuracy measure, Top-k 
ranking metrics hit rate (HR) and normalized discounted cumu-

lative gain (NDCG) are adopted to measure the recommendation 
performance. Following [10], the Gini Index and Popularity Rate 
(PR) are also adopted to measure the fairness. Given the item im-

pression list K = [�1, �2, · · · , �I], where �� represents the num-

ber of exposures of the �-th item, the Gini Index is defned as: ÍI ÍI
1

Gini Index(K) = |�� − � � |, where I is the number 
2 | I |2� ¯ �=1 � =1 

Method HR (⇑) NDCG (⇑) GINI (⇓) PR (⇓) 
MF 0.197 0.103 0.878 0.861 
GMF 0.195 0.098 0.875 0.857 
MLP 0.149 0.077 0.919 0.925 
GMF-CGF (ours) 0.166 0.084 0.837 0.773 
GMF-CGF w/o ord 0.174 0.089 0.853 0.820 
GMF-CGF w/o fairness 0.166 0.089 0.857 0.808 
GMF-CGF w/o ord & fairness 0.195 0.102 0.881 0.860 
MLP-CGF (ours) 0.116 0.059 0.882 0.844 
MLP-CGF w/o ord 0.112 0.054 0.902 0.891 
MLP-CGF w/o fairness 0.141 0.066 0.923 0.932 
MLP-CGF w/o ord & fairness 0.139 0.066 0.903 0.863 

Table 2: Results on the Movielens Dataset. ⇓ indicates the 
lower, the better. 

of total items, � ¯ is the mean of item impression list K . Gini Index 
measures the statistical dispersion of the item exposure. Popularity 
rate is the ratio of popular items among the total items recom-

I I 
mended to the users, and is defned as: PR(K) = 

Í 
���� / 

Í 
�� , 

�=1 �=1 
where �� is binary denoting the �-th item’s value of item popularity. 
For HR and NDCG, the higher the value is, the better the perfor-

mance is. For Gini Index and PR, the lower the value is, the fairer 
the model is. 

4.2.1 Results Analysis. Table 2 shows the results of baselines and 
our proposed methods with Top 10 rankings metrics. We also list 
the results of our methods’ variants. ∗-CGF w/o rec denotes the 
CGF without the orthogonal regularization part, i.e., �� = 0 in 
Eqn. (10). ∗-CGF w/o fairness and denotes CGF without the fairness 
regularization part (� = 0). ∗-CGF w/o ord & fairness is CGF without 
both of these two parts. 

In terms of fairness, our proposed methods recommend more di-
verse items, and meanwhile, have the comparable recommendation 
accuracy to the baselines. This observation verifes that our pro-
posed method makes the base model to be fair without scarifying 
too much utility. It is worth to mention that the results measured 
by GINI and PR are also the indirect indicator of how good the dis-
entanglement of the efect from sensitive attributes’ parent nodes 
to label node. The better it disentangles, the fairer the model. Fur-

thermore, the ablation results shown in the Table 2 indicate that 
the orthogonal regularization and the fairness regularization both 
contribute to the model fairness. 

To further analyze the efect of orthogonal regularization and 
fairness regularization, in Figure 9, we plot the four metrics with 
respect to diferent regularization strengths by tuning one hyper-

parameter and fxing the others. From this fgure, we can observe 
that the stronger the regularization strength is, the fairer the model 
is, and the more utility is sacrifced. Furthermore, the utility and 
fairness trade-of can be controlled by tuning the values of two reg-
ularizations’ hyper-parameters. We also notice that MLP-CGF per-

forms slightly diferent in terms of HR and NDCG: The stronger the 
orthogonal regularization and the fairness regularization, the bet-
ter the performance. The reason is that compared with GMF-CGF, 
MLP-CGF has more learnable parameters in the neural network, 
and adding those regularizations would prevent the over-ftting. 
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Figure 9: Efects of the Orthogonal Regularization and Fairness Regularization. 

5 RELATED WORK 
Most of the existing path-specifc causal fairness works restrict the 
unfair pathways by reducing their path-specifc efect. In [25, 26], 
the prediction error and the path-specifc efect along with unfair 
causal pathways are jointly minimized. The work proposed in [43] 
designs a two-step algorithm, by frst learning the graph structure 
and then minimizing the prediction error with PSE regularization. 
In [33], the authors adopt the response-function variable to bound 
the path-specifc causal fairness. Instead of directly minimizing the 
path-specifc efect, a latent inference-projection based method is 
proposed in [6] to correct the variables that are the descent nodes of 
sensitive attributes. In [15], the CEVAE framework [23] is adopted 
to infer the causal mechanism based on the pre-defned causal 
graph, and then the auxiliary prediction model is constructed based 
on the selected causal relation along with the fairness requirement. 
Relation to Existing Works. Most of the above existing works 
require the prior knowledge about causal graph to calculate the 
PSE or to correct sensitive variables’ descent variables, which is 
hard to be satisfed in real-world applications. Compared with the 
work in [43] that has a separated time-consuming causal struc-

ture learning step, our work applies the fairness constraint on the 
continuous-optimization based graph structure learning, which can 
efciently obtain the causal graph and simplify the PSE calculation. 
Furthermore, it is worth mentioning that all the above existing 
works assume that the sensitive attributes are root nodes. The pro-
posed framework is the frst work that generalizes to the case when 
sensitive attributes are non-root nodes under path-specifc causal 
fairness. Additionally, our proposed framework is motivated by 
the work of utilizing the causal graph discovery to enhance the 
machine learning generalization ability [22]. Compared with [22], 
the proposed CGF framework contains the cascade reconstruction 
step, which is the major diference. With the cascade reconstruction 
step, the unfairness contained in the original data can be corrected. 
Besides, CGF also has the fairness regularization in our proposed 
method, which reduces the unfair paths in the causal graph and 
meanwhile assures that the data correction follows the fair graph. 

We also notice that in the recommendation system domain, there 
are some existing works that handle the popularity bias by examin-

ing the causal link between the popularity and the item [8, 9, 44]. 
Compared with works in this line, in our work, we adopt the struc-

tural causal model and estimate the variable’s generation function 
by neural work, so that we can directly recover the data under the 
fair graph (there is no path from popularity variable P to Y), and 
use the corrected data to train the recommendation model. This is 
the key diference between our work and other existing work. 

6 CONCLUSIONS AND FUTURE WORK 
In this work, we propose a novel causal graph based fair predic-
tion framework under path-specifc causal fairness. The core of the 
proposed framework is to ensure that the graph adopted by the 
prediction model should be close to the fair graph. To fulfll this, we 
integrate the graph structure learning and the fairness regulariza-

tion in an interactive way. The learned graph structure reveals the 
causal graph of the original observations with unfair edges elimi-

nated, and the data reconstructed from the learned graph is close 
to the original observations with unfair efect corrected. Based on 
the corrected causal graph and its associated data, the prediction 
model achieves the path-specifc causal fairness. Experimental re-
sults confrm that the proposed framework ensures fair predictions 
and meanwhile retains the comparable utility. We also generalize 
the proposed framework to the case of sensitive attributes being 
non-root nodes by efect redividing, which is further validated by 
experiments on a real-world recommendation dataset. 

In this paper, we assume that there are no latent confounders in 
the dataset. When this assumption is not satisfed, the causal graph 
may not be identifed from the observation data. Recently, some 
causal discovery works that target to recover the causal graph in 
the presence of latent confounders [5, 34] have been developed. We 
also have a strong assumption that the data follows the Gaussian 
distribution in the theoretical analysis. Relaxing the above two 
assumptions and generalizing our work to the latent confounders 
case will be the future work. 

3687



Path-specific Causal Fair Prediction via Auxiliary Graph Structure Learning 

ACKNOWLEDGMENTS 
The work was partially supported by the National Science Founda-

tion under Grant NSF IIS-2226108 and IIS-2141037. 

REFERENCES 
[1] Chen Avin, Ilya Shpitser, and Judea Pearl. 2005. Identifability of Path-Specifc 

Efects. In Proc. of IJCAI’05. 357–363. 
[2] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna M. Wallach. 2020. 

Language (Technology) is Power: A Critical Survey of "Bias" in NLP. In Proc. of 
ACL’20. 5454–5476. 

[3] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam 
Kalai. 2016. Man is to computer programmer as woman is to homemaker? 
debiasing word embeddings. arXiv preprint arXiv:1607.06520 (2016). 

[4] Robin Burke. 2017. Multisided fairness for recommendation. arXiv preprint 
arXiv:1707.00093 (2017). 

[5] Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, and Kun Zhang. 2019. Triad 
Constraints for Learning Causal Structure of Latent Variables. In Advances in 
Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, 
Canada. 12863–12872. 

[6] Silvia Chiappa. 2019. Path-specifc counterfactual fairness. In Proc. of AAAI’19, 
Vol. 33. 7801–7808. 

[7] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian 
Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and 
Adam Tauman Kalai. 2019. Bias in bios: A case study of semantic representation 
bias in a high-stakes setting. In proc. of FAT’19. 120–128. 

[8] Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogin, Alessandro Difonzo, and 
Dario Zanzonelli. 2022. A survey of research on fair recommender systems. arXiv 
preprint arXiv:2205.11127 (2022). 

[9] Chen Gao, Yu Zheng, Wenjie Wang, Fuli Feng, Xiangnan He, and Yong Li. 
2022. Causal Inference in Recommender Systems: A Survey and Future Di-

rections. CoRR abs/2208.12397 (2022). https://doi.org/10.48550/arXiv.2208.12397 
arXiv:2208.12397 

[10] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao, 
Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, and Yongfeng Zhang. 2021. 
Towards Long-term Fairness in Recommendation. In WSDM ’21, The Fourteenth 
ACM International Conference on Web Search and Data Mining, Virtual Event, 
Israel, March 8-12, 2021. ACM, 445–453. 

[11] Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover 
up systematic gender biases in word embeddings but do not remove them. arXiv 
preprint arXiv:1903.03862 (2019). 

[12] Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, 
and Alexander J Smola. 2007. A Kernel Statistical Test of Independence. In NIPS. 

[13] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History 
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015), 
1–19. 

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng 
Chua. 2017. Neural Collaborative Filtering. In Proc. of WWW’17. 173–182. 

[15] Rik Helwegen, Christos Louizos, and Patrick Forré. 2020. Improving Fair 
Predictions Using Variational Inference In Causal Models. arXiv preprint 
arXiv:2008.10880 (2020). 

[16] Yaowei Hu, Yongkai Wu, Lu Zhang, and Xintao Wu. 2020. Fair Multiple Decision 
Making Through Soft Interventions. In Proc. of NeurIPS’20, Hugo Larochelle, 
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin 
(Eds.). 

[17] Wen Huang, Yongkai Wu, Lu Zhang, and Xintao Wu. 2020. Fairness through 
Equality of Efort. In Proc. of WWW’20. 743–751. 

[18] Kosuke Imai, Luke Keele, and Dustin Tingley. 2010. A general approach to causal 
mediation analysis. Psychological methods 15, 4 (2010), 309. 

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014). 

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37. 
[21] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. 2017. Counter-

factual Fairness. In Proc. of NeurIPS’17. 4066–4076. 
[22] Trent Kyono, Yao Zhang, and Mihaela van der Schaar. 2020. CASTLE: Regular-

ization via Auxiliary Causal Graph Discovery. In Proc. of NeurIPS’20. 
[23] Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, and Max 

Welling. 2017. Causal efect inference with deep latent-variable models. In Proc. 
of NeurIPS’17. 6449–6459. 

[24] Andreas Loukas. 2017. How Close Are the Eigenvectors of the Sample and Actual 
Covariance Matrices?. In Proc. of ICML’17, Doina Precup and Yee Whye Teh (Eds.), 
Vol. 70. 2228–2237. 

[25] Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. 2019. Optimal training of fair 
predictive models. arXiv preprint arXiv:1910.04109 (2019). 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

[26] Razieh Nabi and Ilya Shpitser. 2018. Fair Inference on Outcomes. In Proc. of 
AAAI’18. AAAI Press, 1931–1940. 

[27] Judea Pearl. 2001. Direct and indirect efects. In Proc. of UAI’01. 411–420. 
[28] Chris Russell, Matt J. Kusner, Joshua R. Loftus, and Ricardo Silva. 2017. When 

Worlds Collide: Integrating Diferent Counterfactual Assumptions in Fairness. In 
Proc. of NeurIPS’17. 6414–6423. 

[29] Ilya Shpitser. 2013. Counterfactual graphical models for longitudinal mediation 
analysis with unobserved confounding. Cognitive science 37, 6 (2013), 1011–1035. 

[30] Tomi Silander and Petri Myllymaki. 2012. A simple approach for fnding the 
globally optimal Bayesian network structure. arXiv preprint arXiv:1206.6875 
(2012). 

[31] Yongkai Wu, Lu Zhang, and Xintao Wu. 2018. On discrimination discovery and 
removal in ranked data using causal graph. In Proc. of KDD’18. 2536–2544. 

[32] Yongkai Wu, Lu Zhang, and Xintao Wu. 2019. Counterfactual Fairness: Unidenti-

fcation, Bound and Algorithm. In Proc. of IJCAI’19. 1438–1444. 
[33] Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. 2019. PC-Fairness: A 

Unifed Framework for Measuring Causality-based Fairness. In Proc. of NeurIPS’19. 
3399–3409. 

[34] Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, and Kun Zhang. 
2020. Generalized Independent Noise Condition for Estimating Latent Variable 
Causal Graphs. In Advances in Neural Information Processing Systems 33: Annual 
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 
6-12, 2020, virtual. 

[35] Depeng Xu, Yongkai Wu, Shuhan Yuan, Lu Zhang, and Xintao Wu. 2019. Achiev-

ing causal fairness through generative adversarial networks. In Proc. of IJCAI’19. 
[36] Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. 2021. 

A Survey on Causal Inference. ACM Trans. Knowl. Discov. Data 15, 5 (2021), 
74:1–74:46. 

[37] Sirui Yao and Bert Huang. 2017. Beyond Parity: Fairness Objectives for Collabo-

rative Filtering. In Proc. of NeurIPS’17. 2921–2930. 
[38] Muhammad Bilal Zafar, I. Valera, M. G. Rodriguez, and K. Gummadi. 2015. Learn-

ing Fair Classifers. arXiv: Machine Learning (2015). 
[39] Junzhe Zhang and Elias Bareinboim. 2018. Equality of Opportunity in Classifca-

tion: A Causal Approach. In Proc. of NeurIPS’18. 3675–3685. 
[40] Junzhe Zhang and Elias Bareinboim. 2018. Fairness in decision-making—the 

causal explanation formula. In Proceedings of the AAAI Conference on Artifcial 
Intelligence, Vol. 32. 

[41] Lu Zhang and Xintao Wu. 2017. Anti-discrimination learning: a causal modeling-

based framework. International Journal of Data Science and Analytics 4, 1 (2017), 
1–16. 

[42] Lu Zhang, Yongkai Wu, and Xintao Wu. 2016. Situation Testing-Based Discrimi-

nation Discovery: A Causal Inference Approach. In Proc. of IJCAI’16, Subbarao 
Kambhampati (Ed.). 2718–2724. 

[43] Lu Zhang, Yongkai Wu, and Xintao Wu. 2017. A Causal Framework for Dis-

covering and Removing Direct and Indirect Discrimination. In Proc. of IJCAI’17. 
3929–3935. 

[44] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui 
Ling, and Yongdong Zhang. 2021. Causal Intervention for Leveraging Popularity 
Bias in Recommendation. In Proceedings of the 44th International ACM SIGIR 
Conference on Research and Development in Information Retrieval (Virtual Event, 
Canada) (SIGIR ’21). Association for Computing Machinery, New York, NY, USA, 
11–20. https://doi.org/10.1145/3404835.3462875 

[45] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 
2017. Men Also Like Shopping: Reducing Gender Bias Amplifcation using 
Corpus-level Constraints. In Proc. of the EMNLP’17. 

[46] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. 2018. DAGs 
with NO TEARS: Continuous Optimization for Structure Learning. In Proc. of 
NeurIPS’18. 9492–9503. 

[47] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based 
recommendation. In Proc. of the CIKM’18. 1153–1162. 

3688

https://doi.org/10.48550/arXiv.2208.12397
https://arxiv.org/abs/2208.12397
https://doi.org/10.1145/3404835.3462875

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 CGF Framework
	3.2 Theoretical Analysis
	3.3 Generalization to Non-Root Node Case

	4 Experiment
	4.1 Experiment on Adult Dataset
	4.2 Experiment on Recommendation Dataset

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References



